Advances and challenges in alkaline anion exchange membrane fuel cells

Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang

Abstract

The last several decades have witnessed the rapid development of alkaline anion exchange membrane fuel cells (AAEMFCs) that possess a series of advantages as compared to acid proton exchange membrane fuel cells, such as the enhanced electrochemical kinetics of oxygen reduction reaction and the use of inexpensive non-platinum electrocatalysts, both of which are rendered by the alkaline medium. As an emerging power generation technology, the significant progress has been made in developing the alkaline anion exchange membrane fuel cells in recent years. This review article starts with a general description of the setup of AAEMFCs running on hydrogen and physical and chemical processes occurring in multi-layered porous structure. Then, the electrocatalytic materials and mechanisms for both hydrogen oxidation and oxygen reduction are introduced, including metal-based, metal oxide-based, and non-metal based electrocatalysts. In addition, the chemistries of alkaline anion exchange membranes (AAEMs), e.g. polymer backbone and function groups, are reviewed. The effects of pre-treatment, carbonate, and radiation on the performance of AAEMs are concluded as well. The effects of anode and cathode ionomers, structural designs, and water flooding on the performance of the single-cell are explained, and the durability and power output of a single-cell are summarized. Afterwards, two innovative system designs that are hybrid fuel cells and regenerative fuel cells are presented and mathematical modeling on mass transport phenomenon in AAEMFCs are highlighted. Finally, the challenges and perspectives for the future development of the AAEMFCs are discussed.

Keywords: Fuel cells, Alkaline anion exchange membranes, Electrocatalysts, Single-cell designs, Power density

Article Info

Article history:
Received 25 September 2017
Accepted 8 January 2018
Available online xxx

Journal homepage: www.elsevier.com/locate/pecs

© 2018 Elsevier Ltd. All rights reserved.
5.2.2. Imidazolium

5.3. Other chemistries

5.4. AAEM performance

5.4.1. Effect of pre-treatment

5.4.2. Effect of carbonate

5.4.3. Effect of radiation

6. Single-cell designs and performance

6.1. Effect of anode ionomers

6.2. Effect of cathode ionomers

6.3. Effect of structural designs

6.4. Effect of water flooding

6.5. Single-cell durability

6.6. Single-cell performance

7. Innovative system designs

7.1. Hybrid fuel cells

7.2. Regenerative fuel cells

8. Mathematical modeling

9. Remaining challenges and perspectives

10. Concluding remarks

1. Introduction

We have to adopt new energy supply technologies that utilize renewable energy sources [1–8], due to the current energy and environmental issues we are facing today. Among them, fuel cells have been considered as one of the most promising clean and efficient power generation technologies for a sustainable future [9–15]. Hence, tremendous efforts have been made on the development of fuel cells [16–22]. Alkaline fuel cells (AFCs) that use potassium hydroxide (KOH) solution as the liquid electrolyte have shown much success since the 1960s, particularly working as the energy supply devices powering the Gemini and Apollo spacecraft, due to the fact that the electrochemical kinetics of the oxygen reduction reaction (ORR) is much enhanced resulting from the alkaline environment, allowing the absence of expensive noble metals in preparing the electrocatalysts and thus reducing the cost of the fuel cell system [23–25]. Despite its compelling merits, however, this fuel cell technology has not made sufficient progress in market presence yet. One significant factor preventing widespread commercialization is the use of the alkaline liquid electrolyte, which may cause two problems [26]. One is the carbonate, the product of the side reaction between hydroxide ions in the liquid electrolyte and carbon dioxide in the air, reducing the concentration of hydroxide ions and potentially blocking the pores of the porous electrode via the precipitation of the metal carbonate [27–29]. The other is electrode flooding and drying problems, which are more likely to arise if the liquid electrolyte is not well controlled [30,31].

To address the issues caused by involving the liquid electrolyte, ion exchange membrane fuel cells that employ solid electrolyte have received ever-increasing attention [32–36]. The use of solid electrolyte membranes in fuel cells can remove the carbonate problem and avoid the liquid electrolyte management. Hence, extensive efforts have been devoted to developing alkaline AAEMFCs and remarkable achievements have been made [37–39]. In addition, many other advantages of the AAEMFCs are summarized as follows: (1) faster electrochemical kinetics of the ORR in alkaline media [40,41], (2) absence of noble metal electrocatalysts [42,43], (3) minimized corrosion problems in the alkaline environment [44,45], and (4) cogeneration of electricity and valuable chemicals [46–48]. Currently, compressed hydrogen and liquid alcohol are the most common fuels used in AAEMFCs. The liquid alcohols, e.g. methanol, ethanol, formate, and small polyalcohols, are convenient to handle, store, and transport [49–51]. Another advantage is that they are easy to be acquired from the abundant biomass, suggesting that the process is carbon-neutral and the sources are sufficient [52].

Borohydrides with high energy density are also recognized as a suitable fuel for AAEMFCs due to the fact that they are easy to handle, store, and transport as well. In addition, the products in the anode effluent can be converted back to borohydrides, which is beneficial for a sustainable future [18]. In consideration of degree of commercialization, this article will focus on the AAEMFCs running on hydrogen that is the maturest in commercialization. The objective of this review is to provide a general description of this type of fuel cell, introduce electrocatalytic materials for hydrogen oxidation and oxygen reduction reactions, summarize the alkaline anion exchange membranes (AAEM) and single-cell performance, as well as highlight the remaining challenges and future directions.

2. General description

In principle, the structure of AAEMFCs is just borrowed from proton exchange membrane fuel cells (PEMFCs), with the main difference that the solid membrane is an AAEM instead of a proton exchange membrane (PEM). In AAEMFCs, the charge carrier is OH−transporting through the AAEM from the cathode to the anode, while H+ works as charge carrier transporting through the PEM from the anode to the cathode in PEMFCs. Hence, AAEMFCs have been considered as an alternative to PEMFCs and garnered renewed attention recently due to the above-mentioned advantages. Currently, many researchers have put their focus on the synthesis of polymeric alkaline anion exchange membranes with high ionic conductivity and excellent chemical stability, as well as novel electrocatalysts that are favorable and low cost [53–63].

Like other fuel cells, a single AAEMFC consists of three main components, i.e. an anode, a cathode, and an AAEM, so-called membrane electrode assembly (MEA), as shown in Fig. 1. Specifically, the integrated multi-layered porous structure is constituted sequentially by an anode gas diffusion layer (GDL), an anode catalyst layer (CL), an AAEM, a cathode CL, and a cathode GDL. The GDLs in the anode and cathode that are both composed of two layers, a backing layer (BL) based on carbon paper or carbon cloth and a micro-porous layer (MPL) that is comprised of carbon powders mixed with hydrophobic polymer (typically PTFE). The CLs are usually made of electrocatalysts mixed with ionomer, resulting in the formation of triple-phase boundaries (TPBs) for the electrochemical reactions, i.e., hydrogen oxidation reaction (HOR) and ORR. Particularly, the GDL provides the support for the corresponding CL, distributes the reactants uniformly, and transports electrons to the current collector. Recently, Li et al. [64] proposed a metal foam-based electrode integrating the flow field, BL, MPL, and CL into a whole, which facilitates the mass
and charge transport and extends the TPBs. The anode and the cathode are separated by an AEM, preventing the hydrogen crossover to the cathode, which causes the fuel loss and mixed potential. Meanwhile, the pathway for conducting hydroxide ions is built up. The external circuit provides the channel for the electrons to form the loop.

On the anode, humidified hydrogen is fed to the anode flow channel and transported through the anode GDL, finally to the anode CL, where hydrogen reacts with hydroxide ions to produce water and electrons. The anodic reaction is:

\[
H_2 + 2OH^- \rightarrow 2H_2O + 2e^- \quad E^0 = -0.83 \text{V}
\]

(1)

On the cathode, humidified oxygen supplied by the cathode flow channel is transported through the cathode GDL to the cathode CL, where oxygen is reduced in the presence of water to produce hydroxide ions:

\[
\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^- \quad E^0 = 0.40 \text{V}
\]

(2)

Then, the generated hydroxide ions are conducted through the AEM for the HOR.

Therefore, the overall reaction combining the HOR given by Eq. (1) and the ORR given by Eq. (2) is expressed as follows:

\[
H_2 + \frac{1}{2}O_2 \rightarrow H_2O \quad E^0 = 1.23 \text{V}
\]

(3)

It should be noted that the theoretical cell voltage cannot be realized due to a series of irreversible losses, such as overpotentials caused by activation, ohmic, and mass-transport processes. In addition, it is worthwhile to note that the hydrogen and oxygen gases need humidification before fed into the fuel cell in order to achieve better performance. The major reasons can be summarized as follows: (1) one of the main deficiencies of AAEMs is that the conductivity of AEMs is sensitive to relative humidity. Hence, the humidified gases that are supplied to the channel can humidify the membrane, enhancing the ionic conductivity and thus reducing the internal resistance; (2) in consideration of the electrochemical reaction on the cathode, humidified oxygen provides the essential water molecular that will react with oxygen to form hydroxide ions. In the following section, the electrocatalytic materials for HOR, including metal electrocatalysts and metal oxide electrocatalysts, are reviewed and discussed.

3. Electrocatalytic materials and mechanisms for hydrogen oxidation reaction in alkaline media

Platinum (Pt) is generally used as the electrocatalysts for hydrogen oxidation in AAEMFCs, which negates a prime advantage of alkaline fuel cells, which is potentially free from Pt-based electrocatalysts. The anodic reaction in acid media is expressed:

\[
H_2 \rightarrow 2H^+ + 2e^- \quad \text{(4)}
\]

while, the product of the anodic reaction in alkaline media is water:

\[
H_2 + 2OH^- \rightarrow 2H_2O + 2e^- \quad \text{(5)}
\]

Particularly, the HOR activity on the platinum group metals (PGM) decreases with increasing the pH value. Sheng et al. [65] reported that the electrochemical kinetics of the HOR were at least two orders of magnitude slower in alkaline media than that in acid media. Similarly, Durst et al. [66] demonstrated that the exchange current densities on Pt/C, Pd/C, and Ir/C in acidic media (pH = 0) were all declined by about two orders of magnitude when the pH increased to 13. The oxophilicity did not contribute to enhancing the HOR activity in high pH. They suggested that the pH-dependent HOR activity was associated with the hydrogen binding energy (HBE). It was explained by Sheng et al. [67] that HBE is likely the sole descriptor for the HOR/HER activity on Pt in pH-buffered electrolytes. The results from the rotating disk electrode test and cyclic voltammetry test showed that the HOR/HER activity decreased and HBE linearly increased with the increasing pH, respectively. It was proposed that the adsorbed OH species did not participate in the reaction, but influenced the HBE, leading to the reduction of HOR/HER activity. However, Ledezma-Yanez et al. [68] argued that the pH-dependent HBE change did not account for the HER overpotential on Pt(111). They observed that both the HER and H-underpotential deposition (H-UPD) were slower in alkaline media even if the thermodynamic driving force was the same, implying that hydrogen adsorption was a kinetically hindered step. Therefore, it was elucidated that at the potential of H-UPD and HER, the interfacial water network interacted with the strong interfacial electric field in alkaline media, resulting in the water network more rigid and more difficult to reorganize during the charge transfer through the electrical double layer. Consequently, the rate of hydrogen adsorption was severely influenced by the energetic barrier derived from the strength of the interfacial electric field. To overcome this constrain, many efforts have been made to develop non-platinum catalysts for HOR with high activity at a lower cost [69–84]. This section will describe some types of electrocatalyst, including metals and metal oxides.

3.1. Metals

Many efforts have been made to increase the metal electrocatalyst activity aiming at reducing the amount of Pt, even replacing Pt [53,69,70,74,77,79–81]. Since palladium (Pd) is similar to Pt in electronic properties, the HOR on the Pd surface may follow the same mechanism. In addition, Pd/C and Pt/C exhibited comparable HOR activity examined by the thin-film rotating disk electrode in acid environment [78]. Hence, many efforts have been conducted to improve the electrocatalytic activity of Pd [53,69,79–81]. Bakos et al. [53] studied the synergetic activity of Pd/Ni for the HOR in alkaline media. Fig. 2 illustrated the surface and size distribution of the Pd/Ni. It was shown that 17% of a Ni film covered by a Pd layer of around 1.5 nm thickness exhibited the highest HOR activity than other Pd coverages. For the Pd coverage lower than 17%, the current density increased linearly with the coverage, and then reached a plateau upon further increase, which is attributed to the diffusion limit for the HOR process. Similarly, Aleksiev et al. [69] used Pd nanoparticles to grow onto Ni nanoparticles as the HOR electrocatalyst, resulting in a peak power density of 400 mW cm\(^{-2}\) in an AAEMFC.
fabricated with Pd (1.5 mg cm\(^{-2}\)) as anode electrocatalyst and Ag (3 mg cm\(^{-2}\)) as cathode electrocatalyst with dry hydrogen fed at a flow rate of 200 standard-state cubic centimeter per minute (sccm) and the air fed at a flow rate of 1000 sccm. It was indicated that the HOR activity was enhanced, which was evidenced by the negative shift of the HOR onset potential. In addition, it was believed that the high activity was ascribed to the presence of the OH\(_{\text{ads}}\) on the Ni surface, providing a faster reaction route for the HOR. In addition, the nickel-based electrocatalysts for the HOR have also been investigated [74–76]. Hu et al. [74] studied the feasibility of tungsten doped nickel (Ni–W) as the anode electrocatalyst for AAEMFCs. The results showed that the equilibrium potential of the HOR on Ni–W was established in 200 s, indicating that the electronic surface of Ni was tuned and the oxidation tolerance of Ni surface was significantly enhanced. It was shown that the highest power density reached 40 mW cm\(^{-2}\) with humidified hydrogen and oxygen both at a flow rate of 50 sccm at 60°C, when Ni–W (17.5 mg cm\(^{-2}\)) and CoPPY/C (2 mg cm\(^{-2}\)) were employed as anode and cathode electrocatalysts, respectively. To further improve the HOR activity, Sheng et al. [75] synthesized noble-metal-free electrocatalyst via electro-depositing a ternary metallic CoNiMo on a polycrystalline gold (Au) disk electrode. It was shown that the HOR activity of CoNiMo was 20 times higher than pure Ni in alkaline media, which is attributed to the weakened hydrogen binding energy on CoNiMo. Zhuang et al. [76] prepared a composite electrocatalyst, nitrogen-doped carbon nanotubes supporting nickel nanoparticles (Ni/N-CNT), to replace Pt for an efficient HOR. Although the N-CNT did not directly contribute the HOR activity, it could significantly improve the catalytic activity of Ni nanoparticles, meaning that the mass activity and exchange current density of the Ni/N-CNT were increased 33 and 21 times than that of bare Ni nanoparticles, respectively. It was indicated that the high HOR activity was ascribed to the synergetic effect of N atom and Ni. Ohyama et al. [70] synthesized small ruthenium nanoparticles by liquid phase reduction of RuCl\(_3\) by NaBH\(_4\) under pH control and characterized the structure of the Ru/C via X-Ray diffraction (XRD), transmission electron microscope (TEM), and X-ray absorption fine structure (XAFS) spectroscopy. The results indicated that the diameter of Ru particles was 3 nm under pH control (pH = 7), which was much smaller than that without pH control (pH = 2). The peak power densities of a H\(_2\)/O\(_2\) fuel cell fed with humidified H\(_2\) and O\(_2\) both at a flow rate of 500 sccm employing Tokuyama A201 as AAEM, Pt/C (0.5 mg cm\(^{-2}\)) as cathode electrocatalyst, and 3 nm Ru/C, 3 nm Pt/C, and 11 nm Ru/C as anode electrocatalysts are 250, 185, and 134 mW cm\(^{-2}\), respectively. In addition, the cell performance with using Ru/C was increased with the cycle of fuel cell operation, primarily because the Ru species was reduced during fuel cell operation.

![AFM images of the Pd/Ni surfaces and size distribution of the grains observed for (A) 17% Pd coverage and (B) 35% Pd coverage [53]. Reproduced with permission from Elsevier.](image-url)
operation, resulting in the highly active sites for hydrogen adsorption and oxidation. Recently, Ali et al. [77] synthesized copper (Cu) nanowires (NWs) with Pt (Pt/CuNWs) with a 100-nm diameter and a 25–40 μm length for HOR in alkaline media. It was indicated that compared to Pt/C, the area and mass exchange current densities of Pt/CuNWs were promoted by 3.5 and 1.9 times, respectively. Therefore, the improved performance was attributed to compressive strain on Pt and more adsorption of hydroxyl species provided by inclusion of Cu. In summary, the novel HOR metal electrocatalysts that exhibit comparable performance with Pt are mainly based on Pd, Ni, and Ru. Although the great progress has been made recently, attentions also should be paid to developing other substrate materials that are more cost-effective.

3.2. Metal oxides

Although the metal electrocatalysts are promising, metal oxide electrocatalysts that are inexpensive as well have been extensively studied [71-73,82,83]. Lu et al. [71] synthesized Cr-decorated Ni (CDN) nanoparticles and tested the effect of modulation on the surface reactivity toward oxygen via XRD and X-ray photoelectron spectroscopy (XPS). It was indicated that CDN can be easily activated by gaseous hydrogen at room temperature, resulting in the employment of CDN as anode electrocatalyst. They showed that a peak potential cycling.

4. Electrocatalytic materials and mechanisms for oxygen reduction reaction in alkaline media

Extensive studies have been conducted on the oxygen reduction reaction in alkaline media. The electrocatalytic reduction of oxygen proceeds either two-electron pathway or four-electron pathway [85]. Fig. 3(a) generally illustrated the ORR process in alkaline media. The subscripts of sa, a, b, and * denoted strongly adsorbed, weakly adsorbed, bulk, and the vicinity of the electrode, respectively. All reactions could be concluded as follows:

\[
\begin{align*}
O_2 + 4e^- + 2H^+ & \rightarrow 2H_2O \\
O_2 + 2e^- + H_2O & \rightarrow HO_2^- + OH^- \\
\end{align*}
\]

In summary, great progress has been made in the development of HOR electrocatalysts with high catalytic activity and low cost to replace Pt in AAEMFCs. Although numerous investigations have been reported in recent literature, the stability of non-platinum electrocatalysts is still the major limiting factor for the commercial applications, which is derived from the morphological changes during the process of electrocatalyst operation. Therefore, the future research direction could be focused on enhancing the durability of the newly synthesized electrocatalysts without sacrificing the HOR activity.
step was the formation of weakly adsorbed species via the diffusion of bulk oxygen. Then the weakly adsorbed species became the strongly adsorbed species through chemisorption, which were the key intermediate in the process. As the strongly adsorbed species were chemisorbed, the reactions associated with them were mainly irreversible processes \(\left(k_3, k_{4,12}, k_{13} \right) \). In the two-electron pathway, the weakly adsorbed species were the critical intermediate. The difference of the strongly adsorbed species and the weakly adsorbed species lied on the ability to desorb directly and go into solution. Since the weakly adsorbed species were more likely to be physically adsorbed, adsorption-desorption equilibrium with corresponding species in solution was established as shown in \(k_2 \) and \(k_{20} \) and \(k_{20} \) as well as \(k_{25} \) and \(k_{25} \). It was believed that a superoxide ion \(\text{HO}_2^{-} \) could be formed after the oxygen molecule received an electron. Subsequently, as the weakly bound superoxide ion was unstable in aqueous solution, it was required to decompose into \(\text{HO}_2^{-} \) and oxygen or a electrochemical pathway decomposing into \(\text{HO}_2^{-} \) and oxygen or a electrochemical pathway receiving an electron and a proton to form \(\text{HO}_2^{-} \). Analogously, the \(\text{HO}_2^{-} \) possessed two reaction routes: one was to be chemisorbed producing \(\text{HO}_2^{-} \), and the other was to diffuse into the bulk solution. It can be seen from Fig. 3(b) that the formation of peroxide intermediate species, \(\text{HO}_2^{-} \) and \(\text{H}_2\text{O}_2 \), is more energetically favorable during the ORR due to the lower overpotential. Thus, the ORR kinetics are dramatically more sluggish in acid media than that in alkaline one, which can be explained by the stabilization effect of the peroxide intermediate of \(\text{HO}_2^{-} \) caused by the negative charge [86]. When the fuel cell is discharging, the cathode potential is higher than the potential of zero charge, resulting in the positive charge on the electrode. Hence, it is \(\text{HO}_2^{-} \) rather than the neutral molecule of \(\text{H}_2\text{O}_2 \) that can be adsorbed on the cathode derived from the electrostatic attraction and further to be reduced on the active sites. As the ORR obstruction has been unveiled, a gate of synthesizing variety of electrodes has been opened. We herein summarize the property and performance of the electrocatalysts reported in recent literatures, including precious metal electrocatalysts, non-precious metal electrocatalysts, and non-metal electrocatalysts.

4.1. Precious metals

Undoubtedly, \(\text{Pt/C} \) is still the most commonly used electrocatalyst, which is also the performance criterion of newly developed materials. However, the high cost and rarity have hindered the utilization of Pt in fuel cells, resulting in numerous research efforts led to the development of non-Pt noble metal electrocatalysts with high activity for AAEMFCs [55,87-93]. Fortunately, Ag- and Pd-based electrocatalysts, more abundant noble metals than Pt, have exhibited promising ORR activity via various modification methods, including dispersing nanoparticles evenly on functionalized support, establishing core–shell structure, and inserting other elements. Vinodh et al. [55] synthesized carbon supported silver (Ag/C) with different metal loadings via wet impregnation method. The schematic representation of cathode was illustrated in Fig. 4(a). The characteristics of the electrocatalysts were investigated by XRD, thermogravimetric analysis (TGA), UV–visible diffuse reflectance spectra (DRS-UV), and Raman spectroscopy. The results indicated that the Ag particles in a range of 5–11 nm were well distributed and stable at 800°C as well as the maximum cell voltage and power density of 0.69 V and 109 mW cm\(^{-2}\) were obtained with 10 wt% metal electrocatalysts, respectively. The higher ORR activity was attributed to the larger surface area, enhanced electrical conductivities, and high densities of surface defects. Maheswari et al. [90] investigated the electrochemical kinetics of Pd/C, Pt/C, and Au/C as cathode electrocatalysts via steady-state performance test and linear sweep voltammetry (LSV). It was reported that the Pd/C showed higher performance (55 mW cm\(^{-2}\)) than Pt/C (40 mW cm\(^{-2}\)) and Au/C (1 mW cm\(^{-2}\)) with both humidified hydrogen and oxygen fed at a rate of 500 sccm,

![Fig. 4](image-url)
resulting from the Pd surface exhibiting the optimum balance between the kinetics of O = O bond breaking and electrocatalytic reduction of the oxygenated intermediates or O–H formation. However, the carbon support will face two main challenges that interfere the performance of electrocatalysts. One is that carbon support may suffer from drastic corrosion and oxidation during fuel cell operation. The other is that the completion of four-electron ORR may be hindered due to the fact that the two-electron outer-sphere electron transfer is promoted. Hence, Zhang et al. [92] proposed that the graphene oxide (GO) had the potential to serve as support material due to the abundant oxygen containing functional groups that offer large surface area. Alloys of Pd–Au nanochains networks were uniformly anchored on reduced graphene oxide (Pd–Au NNS/RGO) via a one-pot wet-chemical co-reduction method with the assistance of caffeine. The results from cyclic voltammetry (CV) demonstrated that the Pd–Au NNS/RGO exhibited much more positive onset potential and half-wave potential than those achieved by using Pd black and Pd/C, indicating that the ORR activity was significantly improved. Meanwhile, it was shown from the ORR polarization curves that no obvious degradation occurred after the Pd–Au NNS/RGO modified electrode underwent 1000 times tests. It is worthy to note that there are various support materials for nanoparticles, including Ti, Ni foam, carbon nanotubes (CNTs), carbon nitride, and carbon nanofibers. Similarly, bimetallic core–shell nanostructures possess the enhanced ORR activity, primarily due to the rough and porous surfaces. Recently, Fu et al. [93] synthesized Au@Pd core-shell nanohorns (CSNts) via a facile co-chemical reduction method with poly(allylamine hydrochloride) (PAH) and ethylene glycol (EG) as agents at room temperature. The results from CV showed that the Au@Pd CSNts had a positive shift of 34 mV and 30 mV of onset and half-wave potentials, respectively, compared with Pd black, demonstrating that the ORR activity was more competitive. It was concluded that the improving ORR activity could be attributed to: (1) the high electrochemically active surface area (ECSA) resulted in sufficient active sites, (2) the electron and oxygen transport was facilitated by the unique porous construction, (3) the coverage of the active sites by the hydroxyl and superhydroxyl groups was suppressed due to the core–shell structure. Inserting other elements into noble metal electrocatalysts is another way to improve the ORR performance of the alloy electrocatalysts. Generally, the 3d transition metals have been widely used as the alloying elements to promote the activity and stability of the electrocatalysts. Maheswari et al. [91] synthesized PdCo electrocatalysts in varying atomic ratios of Pd to Co, namely 1:1, 2:1, and 3:1, and investigated the structure, dispersion, electrochemical characterization and surface area of PdCo/C via XRD, TEM, and CV, respectively. It was confirmed that the alloy formation and lattice contraction existed between Pd and Co. The TEM images indicated that the nanoparticles were crystallized and uniformly dispersed on carbon. It was also shown that when Co content in the alloy increased, the mean particle size decreased due to the increased average Pd–Pd bond distance. The results from the single cell test indicated that Pd/Co (3:1) possessed higher performance (85 mW cm$^{-2}$) with both humidified H$_2$ and O$_2$ fed at rates of 500 sccm at atmospheric pressure than PdCo (2:1)/C (75 mW cm$^{-2}$), PdCo (1:1)/C (26 mW cm$^{-2}$) as well as Pd/C (56 mW cm$^{-2}$), which was attributed to the higher ORR activity and selectivity of PdCo (3:1)/C than PdCo (2:1)/C, PdCo (1:1)/C as well as Pd/C. In summary, the precious metal electrocatalysts show comparable ORR electrocatalytic activity with Pt. One of the future directions is to enhance the durability of the existing electrocatalysts, while the other is to exca- vate the potential precious electrocatalysts with high ORR activity.

4.2. Non-precious metals

Though the precious metal electrocatalysts catalyze the ORR efficiently, the high cost and insufficient durability shadow their future utilization. Hence, further to reduce the cost, tremendous efforts have been made to develop non-precious metal electrocatalysts [94–97]. However, the abundant 3d transition metals do not show ORR activity due to the affinities with oxygen. Fortunately, a breakthrough has been reported that metal macrocycle compounds exhibit promising ORR activity, in which the N-metal bond plays an essential role in the progress [94]. On one hand, the formidable anchoring effect between the metal and surrounding N elevates the stability of the compounds. On the other hand, the redox potential can be relocated by the metal–N bond that serves as the bridge for the π-conjugated ligands on the outer periphery. Recently, Kruusenberg et al. [94] synthesized Co and Fe phthalocyanine electrocatalysts employing multi-walled carbon nanotubes (MWCNTs) as support materials via a simple thermal method. The results from the rotating disk electrode (RDE) tests showed that the onset potentials of CoPc/MWCNT and FePc/MWCNT electrocatalysts was -0.1 V and -0.1 V, respectively, indicating that the CoPc/MWCNT possessed high ORR electrocatalytic activity than FePc/MWCNT. The single fuel cell test demonstrated that the peak power densities were 100, 60, and 120 mW cm$^{-2}$ with CoPc, FePc, and Pt (0.6 mg cm$^{-2}$) as cathode electrocatalysts and Pt (0.4 mg cm$^{-2}$) as anode electrocatalyst with humidified H$_2$ fed into the anode at a rate of 200 sccm and humidified O$_2$ fed into the cathode at a rate of 400 sccm at 54°C. Li et al. [95] synthesized non-precious metal electrocatalysts (denoted as CoFeN/–H, CoFeN/–H/L, and CoFeN/–H/LH) consisting of carbon, nitrogen and transition metal via different post-treatment methods. They investigated the post-treatment methods on the performance of electrocatalysts for ORR in alkaline media via RDE technique. It was reported that the heat treatment played a crucial role in generating highly active catalytic sites. It was also shown that a peak power density of 177 mW cm$^{-2}$ and open circuit voltage (OCV) of 0.57 V were obtained when CoFeN/–H/LH (4 mg cm$^{-2}$) had been employed as cathode electrocatalyst and Pt (0.4 mg cm$^{-2}$) as anode electrocatalyst with humidified H$_2$ fed into the anode at a rate of 200 sccm and humidified O$_2$ fed into the cathode at a rate of 400 sccm at 50°C. While for Pt electrocatalyst, the peak power density was 196 mW cm$^{-2}$ and the OCV was 1.04 V, showing that the CoFeN/–H/LH electrocatalyst had the possibility to replace expensive Pt. Song et al. [96] prepared carbon black based Fe–N$_x$/C electrocatalysts for the ORR. It was demonstrated that the activity order of different active sites is Fe–N$_{4x}$–C >> Fe–N–C >> Fe–N–C ≈ C and the one with Fe 10 wt% and N 1.57 wt% exhibited the best performance (107 mW cm$^{-2}$). In addition, the Fe–N/C electrocatalysts could be synthesized by direct pyrolysis of precursors, which was cost-efficient and batch manufacturing, giving the possibility of Fe–N/C electrocatalysts for large-scale commercial applications. He et al. [97] synthesized a new nanocomposite electrocatalyst containing high loading cobalt oxide (24.7 wt%, Co) via incorporating CoO onto nitrogen-doped reduced GO as shown in Fig. 4(b). They reported that a synergistic effect between rGO and CoO, resulting from the unique rGO(N)–Co(II)–O–Co(II)–rGO(N) structure, might facilitate the ORR in alkaline media and enhance the four-electron selectivity as well. Furthermore, abundant defects and nitrogen doping resulted in the accommodation of graphene-based supports for a high Co loading. The fuel cell test results showed that the performance of the CoO/rGO(N) did not exhibit significant difference with Pt up to 400 mA cm$^{-2}$. While the power density of the CoO(rGO(N)) experienced a large drop compared to Pt (248 mW cm$^{-2}$ vs 387 mW cm$^{-2}$), which was ascribed to the relatively low electron conductivity. In conclusion, compared to precious electrocatalysts, the use of non-precious metal electrocatalysts has further reduced the cost. However, the electrocatalysts suffer severe corrosion and degradation during the fuel cell operation, especially at high current densities. Hence, the stability of the electrocatalysts in harsh environment needs to be enhanced.
4.3. Metal oxides

In recent years, great attention has been paid into a different class of metal oxides electrocatalysts so-called perovskite electrocatalysts for ORR, which are considered as alternatives to precious metal electrocatalysts due to the ORR activity and low cost [98–106]. Generally, the perovskite electrocatalysts can be denoted as $A_{1-x}A'_{x}A''_2B_{1-y}B'_yO_3$, in which A always represents rare-earth elements (La, Pr, and Gd) or alkaline earth metal elements (Sr and Ba) and B always refers to transition-metal elements (Mn, Co, Ni, and Fe). Suntivich et al. [98] indicated that the ORR activity of perovskite electrocatalysts was primarily related to σ^*-orbital (e_g) occupation and the extent of B-site transition-metal-oxygen covalency, which could serve as the design principle for synthesizing perovskite electrocatalysts with promising ORR activity. The principle could be claimed that the perovskite electrocatalysts that possessed an e_g filling (σ^*-orbital occupation) close to 1 exhibited the highest ORR activity. Moreover, enhancing the covalency between the metal 3d and oxygen 2p orbitals also contributed to improving the ORR activity. In a recent publication by Sunarso et al. [99], the ORR activity of La-based perovskite electrocatalysts was investigated via a thin-film rotating ring-disk electrode test. Fig. 4(c) showed the results that LaCrO$_3$ performed largest ORR current density and most positive onset potential among the LaMO$_3$ (M = Ni, Co, Fe, Mn, and Cr). Notably, when half of the Ni in LaNiO$_3$ was substituted with Co, Fe, Mn, and Cr, a more positive shift of onset potential was observed for all the newly obtained electrocatalysts, which could be explained by the valence state change of transition-metal cation. The Koutecky–Levich analysis implied that the ORR proceeded for-electron pathway on all the perovskite electrocatalysts, which was consistent with that little hydroperoxide ion was detected during the negative sweep from 0.5 V to -0.75 V. Jin et al. [100] prepared an arch-like $La_0.75Sr_0.25MnO_3$ (LSM) perovskite oxide as electrocatalyst for both ORR and OER via a co-precipitation method with urea as a precipitator. The results from the SEM and BET analysis showed that the morphology was spherical particles with thorns radially distributed on the surface and the specific surface area was 48 m2 g$^{-1}$. It was indicated that the four-electron pathway was dominant during ORR and a maximum cathodic current density was 5.2 mA cm$^{-2}$ at -1.0 V vs. Ag/AgCl with 2500 rpm. Stoezeringer et al. [101] found that the (001)-oriented LaMnO$_3$-based (LMO) perovskite films have intrinsic ORR activities comparable to those of high-surface-area LMO powder catalysts, which was attributed to (001) surface being the activity dominant facet. When the thickness of LMO film grown on Nb-doped SrTiO$_3$ (NTO) reduced, the ORR activity decreased. This phenomenon was explained by the barrier rooted in interfacial band bending that hindered electron transfer at the electrode-electrolyte junction and the increased e_g orbital occupancy due to the charge transfer from the NTO to LMO. Recently, Risch et al. [102] utilized pulsed laser deposition to synthesize well-defined surfaces consisting of $Ba_0.5Sr_0.5CO_{0.8Fe_{0.2}}O_{3-\delta}$ (BSF) on thin film $La_0.8Sr_{0.2}MnO_3-\delta$ (LSMO) grown on (001)-oriented NTO as a bifunctional electrocatalyst. The combined overpotentials from both OER and ORR kinetics on BSCF|LSMO|NTO could be as low as 0.7 V, which rivaled the intrinsic activities of state-of-the-art catalysts in the literature. Additionally, the surface stability of the LSMO|NTO was promoted by the decoration of BSCF. A hybrid electrocatalyst composed of NiCoMnO$_4$ nanoparticles that were anchored on N-doped graphene nanosheets with high efficiency and low cost was proposed [103]. It was demonstrated that the NiCoMnO$_4$/N-rGO exhibited excellent ORR activity ($E_{\text{onset}} = 1.5$ V vs. RHE and high current density of 14 mA cm$^{-2}$) and catalyzed ORR mostly through four-electron process.

In summary, the unique perovskite structure provides a great flexibility to design and synthesize a large amount of electrocatalysts with controlled electronic and geometric structures for efficient ORR. It is believed that a near unity e_g orbital occupancy in transition metal cation, closer transition metal d-band and oxygen p-band center relative to the Fermi level, high covalency of the metal–oxygen bond, and oxygen deficiency are favorable for the ORR activity of the perovskites. Future research direction can be elucidating the active sites and the relevant ORR mechanism that are essential to provide valid guidance to tune the structures of perovskite allowing enhanced O$_2$ adsorption and subsequent dissociation. In addition, the other research focus can be integrating perovskite electrocatalysts with ORR-active nanocarbons to significantly improve mass activity by increasing the active surface areas and enhance charge/mass transport due to its low electrical conductivity [104].

4.4. Non-metals

A non-metal electrocatalyst, also called metal-free electrocatalyst, does not include any metal element. To further reduce the cost and increase the ORR activity, considerable progress has been made in the synthesis of metal-free electrocatalysts. Recently, it has been reported that the carbon doped with nitrogen shows good ORR activity [107–113]. Higgins et al. [107] synthesized three types of nitrogen doped carbon nanotubes (N-CNTs), denoted as ethylenediamine (ED-CNTs), 1,3 diaminopropane (DAP-CNTs), and 1,4 diaminobutane (DAB-CNTs), via a simplistic single injection chemical vapor deposition (CVD) setup. Then thin and free standing films, fabricated with the N-CNTs, were tested as the ORR electrocatalyst in a single fuel cell with hydrogen and oxygen both fed at a rate of 300 sccm. It was indicated that the ED-CNT film displayed the significantly higher performance in alkaline media than commercial carbon supported platinum (25.5 mW cm$^{-2}$ vs 19.1 mW cm$^{-2}$), which was ascribed to the high extent of nitrogen doping, resulting in the distinct structural properties of N-CNTs and enhanced electronic properties. Similarly, Rao et al. [108] prepared nitrogen doped aligned carbon nanotubes via an alumina template technique. It was depicted from microscopic images that the nanotubes exhibited an outer diameter of 100 nm and length of 60 μm. The OCV of the AAEMFC employing the N-CNT (5 mg cm$^{-2}$) as the cathode electrocatalyst was -0.87 V, which was comparable to that achieved by using the commercial Pt/C (0.5 mg cm$^{-2}$) as the cathode electrocatalyst. In addition, a peak power density of 37.3 mW cm$^{-2}$ was achieved with the humidified H$_2$ (95% RH, flow rate = 500 sccm) as fuel at the anode and humidified O$_2$ (95% RH, flow rate = 1000 sccm) as oxidant at the cathode. Though the performance was a little inferior in comparison to that of the AAEMFC fabricated with Pt/C electrocatalyst (61.7 mW cm$^{-2}$), it exhibited potential to replace the precious metal electrocatalysts. Ding et al. [109] proposed a novel method to synthesize pyridinic- and pyrrolic-doped graphene for the ORR with the aid of layered montmorillonite (MMT). A high yield of planar N that was catalytically active toward the ORR was observed, as shown in Fig. 4(d). The fuel cell fabricated with the NG@MMT (4 mg cm$^{-2}$) as cathode electrocatalyst and Pt (0.3 mg cm$^{-2}$) as anode electrocatalyst showed a peak power density of 320 mW cm$^{-2}$ with hydrogen and oxygen supplied to the anode and the cathode at flow rates of 150 and 200 sccm, respectively. Notably, the performance, which was comparable to that of single fuel cell employing commercial Pt as anode electrocatalyst (451 mW cm$^{-2}$), could be further enhanced by reinforcing the oxygen transport. Lu et al. [113] synthesized nitrogen-doped reduced graphene oxide (N-ESG) via the treatment of graphene employing urea as agents at different temperatures. It could be seen from CV results that the N-ESG based electrode showed a specific cathodic peak at -0.4 V in the presence of oxygen, indicating that the N-ESG electrocatalyst possessed the excellent ORR activity. In addition, it was demonstrated that the peak potential of the N-ESG was more positive than the bare RGO, which means that the
nitrogen plays an important role in enhancing the ORR activity. Nevertheless, the reduction current reached the maximum value when the mass ratio of urea and GRO was increased to 1:10.

In summary, the most attractive advantage of AAEMFCs is the absence of noble metal electrocatalysts on the cathode, thereby reducing the cost. Though it has not been practically realized, tremendous efforts have been made to develop substitute electrocatalysts, including non-precious metal electrocatalysts, and non-metal electrocatalysts for the ORR in alkaline media. The fuel cell, fabricated with Pt-based anode and NG@MMT based cathode, results in the highest power density (320 mW cm\(^{-2}\)). The future research direction is suggested to study the mechanisms of catalysis and the structure of electrocatalysts and then to synthesize non-PGM catalysts with the high ORR activity.

5. Alkaline anion exchange membranes (AAEMs): chemistries and performance

Anion exchange membrane is typically composed of a polymer backbone onto which fixed cationic sites are tethered. It is the cationic groups that contribute to the mobility of hydroxide ions from cathode to anode through membrane. Recently, great attention has been paid to the development of solid polymer electrolytes served as a thin membrane of a few tens of micrometers in thickness, which alleviates the carbonate problem caused by the use of alkaline aqueous electrolyte [26]. However, the carbonate problem still cannot be completely eliminated, as the AAEMFCs are still sensitive to the CO\(_2\) atmosphere. Additionally, the AAEMs are also facing two more challenging issues. One is to further promote the ionic conductivity, resulting in a better performance. Since the diffusion coefficient of OH\(^-\) is much lower than H\(^+\), a higher ion exchange capacity (IEC) is needed so that a similar conductivity could be achieved. Nevertheless, higher IEC leads to the sacrifice of mechanical properties due to the excessive polymer swelling. The other is to continue to improve the stability of the AAEMs in the harsh environment and at elevated temperatures. The polymer backbones and functional groups related to the conductivity, mechanical and chemical stability can be easily attacked by the OH\(^-\) and radicals [30]. Hence, tremendous research has been conducted on improving the conductivity as well as enhancing the thermal and chemical stability of AAEMs [114–118].

5.1. Polymer backbone

5.1.1. Poly(vinyl alcohol)

Poly(vinyl alcohol) (PVA) is a polyhydroxy polymer, which is very common in practical applications because of its easy preparation and biodegradability. Moreover, PVA shows a good chemical stability and hydrophilicity due to the hydroxyl groups. Qiao et al. and his group synthesized three types of polymer electrolyte membranes using PVA as matrix crosslinked with potassium hydroxide, poly(acrylamide-co-diallyldimethylammonium chloride), and poly(diallyldimethylammonium chloride), denoted as PVA-KOH [58], PVA–PAADDA—GA [119] and PVA/PDDA–OH [120,121], respectively. Analogously, all the prepared membranes exhibited excellent chemical and thermal stability, as well as good ionic conductivity. It was indicated that the hydroxide-ion conductivities of these membranes were substantially boosted from 2.75 \(\times 10^{-4}\) S cm\(^{-1}\) to 0.02 S cm\(^{-1}\) at room temperature. Zhang et al. [115] investigated the effect of molecular weight on the performance of the membranes, which was developed employing PVA as polymer matrix and poly(diallyldimethylammonium chloride) (PDDA) as anion charge carriers. They claimed that PVA/PDDA-HMw membrane possessed the maximum OH\(^-\) conductivity of 0.027 S cm\(^{-1}\), the best mechanical property, highest tensile strength of 15.3 MPa and tensile elongation of 16.8%, and excellent thermal stability, high onset degradation temperature above 170°C, which was ascribed to the most compact and dense network structure. Peak power densities of 35.1, 28.5, 23.4, and 18.2 mW cm\(^{-2}\) were obtained in a H\(_2/O_2\) fuel cell fabricated with Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode with humidified hydrogen fed at a rate of 100 sccm and humidified oxygen fed at a rate of 70 sccm at room temperature employing PVA/PDDA-HMw, PVA/PDDA-MMw, PVA/PDDA-LMw, and PVA/PDDA-ULMw, respectively. Merle et al. [114] fabricated AAEMs based on PVA crosslinked with poly(ethylene glycol) diglycidyl ether (PEGDGE) for alkaline fuel cells via simply blending the cheap materials. It was shown that the membranes exhibited high long-term ionic conductivity and high chemical stability, as shown in Fig. 5 (a) and (b). In addition, a maximum power density of 72 mW cm\(^{-2}\) was achieved in an alkaline fuel cell fabricated with Pt (4 mg cm\(^{-2}\)) both at anode and cathode employing PVA membrane with 15 wt% acrylic acid, which was the only candidate for the application due to the denser structure with hydrogen (RH = 100%) supplied at a flow rate of 40 sccm and oxygen supplied at a flow rate of 80 sccm. Lu et al. [122] synthesized PVA-poly(vinylbenzyl chloride) (PVBC) membrane with a macromolecular crosslinker, in which PVBC acted as conducting polymers and PVAc containing dimethylamino groups worked as crosslinker and the supporting matrix simultaneously. The results from Fourier transform infrared (FT-IR) and XPS showed that the PVBC and PVAc were crosslinked successfully. In addition, it was indicated that hydroxide-ion conductivity was larger than 0.01 S cm\(^{-1}\) at room temperature and swelling ratio (SR) was suppressed when the temperature was elevated. A peak power density of 124.7 mW cm\(^{-2}\) was obtained in an AAEMFC fabricated with Pt (0.4 mg cm\(^{-2}\)) both at anode and cathode employing the crosslinked membrane with hydrogen (RH = 100%) supplied at a flow rate of 40 sccm and oxygen supplied at a flow rate of 70 sccm at 40°C.

Fig. 5. Effect of (a) the temperature and (b) the time on ionic conductivity [114]. Reproduced with permission from Elsevier.
5.1.2. Poly[(arylene ether)]

Poly[(arylene ether)]s possess excellent stability and water resistance that are preferable properties of AAEs. Thus, some AAEs based on poly[(arylene ether)]s have been reported [116,117,123]. Tanaka et al. [123] synthesized aromatic multiblock copolymer membrane, poly[(arylene ether)] containing quaternized ammonium-substituted fluorene groups, via block copolycondensation of fluorene-containing hydrophilic oligomers and linear hydrophobic oligomers, chloromethylolation, quaternization, and ion-exchange reactions. It was reported that this membrane exhibited considerably high hydroxide-ion conductivities, reaching 144 mS cm\(^{-1}\) at 80\(^\circ\)C, and retained the high conductivity for 5000 h. They claimed that introducing highly ionized hydrophilic blocks into multi-block structure was an efficient way to promote the ionic conductivity. Jasti et al. [116] proposed a facial synthesis of aminated multiblock poly[(arylene ether)] with hydrophilic blocks via nucleophilic substitution poly condensation followed by quaternization and alkalization reactions. It was shown that hydrophilic/hydrophobic phase separation due to the interconnected ion transport pathway, resulting in a high ionic conductivity of 150 mS cm\(^{-1}\) at 80\(^\circ\)C. In the presence of two vicinal quaternary ammonium groups, the membrane exhibited promising alkaline stability, because nucleophilic attack was hindered, as well as the degradation was avoided. Li et al. [117] prepared functionalized quaternary ammonium poly[(arylene ether)]s (QBMPAEs) containing tetramethyl triphenyl methane moieties via polycondensation, benzyllic bromination, quaternization, and alkalization. It was demonstrated that the IECs could be adjusted from 0.90 to 1.73 mmol g\(^{-1}\) by controlling the conditions of the bromination reaction. In addition, the water uptake (WU) and SRs of the QBMPAEs membranes were moderate and could be adjusted by controlling their degree of bromination (DBM) values. One of the synthesized membranes, QBMPAE-d membrane, possessed excellent long-term alkaline stability for 30 days. It was indicated that the QBMPAE-d membrane resulted in the highest conductivity of 46.6 mS cm\(^{-1}\) at 80\(^\circ\)C and a peak power density of 20.1 mW cm\(^{-2}\) was achieved in a H\(_2)/air single fuel cell with hydrogen (RH = 100%) supplied at a flow rate of 300 sccm and air supplied at a flow rate of 800 sccm along with 0.1 mg cm\(^{-2}\) Pt on the anode and 0.2 mg cm\(^{-2}\) Pt on the cathode at 70\(^\circ\)C.

5.1.3. Poly(2,6-dimethyl-1,4-phenyleneoxide)

Poly(2,6-dimethyl-1,4-phenyleneoxide) (PPO) has outstanding physical properties, including high dimensional stability, excellent mechanical properties, high thermal stability, low moisture uptake, low flammability, and exceptional electrical properties, including a low dielectric constant and a low dielectric dissipation factor. Moreover, another superiority of PPO is the safety. The toxicity of many other materials has restricted their development for AAEMFC applications. In view of these characteristics, PPO has been regarded as an excellent candidate for high-frequency substrates. Ong et al. [124] synthesized PPO based membranes via bromination/amination serial reactions, which reduced the number of involved toxic chemicals and reaction time. Though the synthesis route was relatively simple, the obtained membrane, prepared from 5 wt% PPO, bromine/PPO molar ratio at 10, nitrogen-free atmosphere, with hydroxylaton treatment and N-methyl-2-pyrrolidone (NMP) as the membrane casting solvent, possessed competitive ionic conductivity of 1.64 \times 10^{-2} \text{ S cm}^{-1} at 60\(^\circ\)C. The peak power density increased from 3 mW cm\(^{-2}\) to 19.5 mW cm\(^{-2}\) with the temperature going up from 25\(^\circ\)C to 70\(^\circ\)C with hydrogen (RH = 100%) supplied at a flow rate of 5 sccm and oxygen supplied at a flow rate of 10 sccm along with Pt (0.65 mg cm\(^{-2}\)) both at anode and cathode. Further increasing the temperature, a dramatic degradation occurred primarily due to the thermal degradation of AAEM. Lin et al. prepared PPO based AAEMs containing pendant guanidinium groups [125], benzimidazolium (BIm) groups [126], and 1,2-dimethylimidazolium (Dim) functional groups [127], denoted as GPPO, BImPPO, and DimPPO, respectively. It was indicated that the GPPO membrane possessed high anion conductivities resulting from the high basicity of guanidinium groups, and short-term thermal and long-term alkaline stabilities due to the \(\pi\) electron conjugated system. Meanwhile, a peak power density of 16 mW cm\(^{-2}\) was achieved at 50\(^\circ\)C when the GPPO membrane was fabricated into a H\(_2)/O\(_2\) fuel cell utilizing Pt (0.4 mg cm\(^{-2}\)) both at anode and cathode with both humidified hydrogen and oxygen fed at rates of 600 sccm. In comparison with the analogous PPO membranes containing the classical pendant quaternary ammonium and imidazolium cations, the BImPPO membrane showed advantages in ionic conductivity, dimensional, thermal, and mechanical stabilities. Furthermore, the peak power density was 13 mW cm\(^{-2}\) at 35\(^\circ\)C in the case of the utilization of optimal BIm-PPO-0.54 AAE. In addition, the DimPPO membrane also exhibited comparative conductivity, in the ranges of 10–40 mS cm\(^{-1}\) and 18–75 mS cm\(^{-1}\) at 30\(^\circ\)C and 60\(^\circ\)C, respectively. Nevertheless, the power density employing DimPPO membrane was much higher than that of other PPO membrane, reaching 56 mW cm\(^{-2}\), whereas it decreased dramatically to 31 mW cm\(^{-2}\) after three-time repetition of the test, suggesting the poorer stability. Li et al. [128] synthesized quaternized PPOs materials containing clicked 1,2,3-triazenes for AAEs via Cu-catalyzed “click chemistry”. It was shown that the obtained membranes possessed higher WU, hydroxide-ion diffusion coefficient and anion conductivities due to the formation of efficient and continuous hydrogen-bond networks. A hydroxide-ion conductivity of 27.8–62 mS cm\(^{-1}\) was achieved at 20\(^\circ\)C in water, which was several times higher than that of a typical PPO-based AAEM (TMA-20). An improved peak power density of 188.7 mW cm\(^{-2}\) was obtained in a H\(_2)/O\(_2\) fuel cell fabricated with Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode with hydrogen (RH = 100%) supplied at a flow rate of 200 sccm and oxygen supplied at a flow rate of 200 sccm at 50\(^\circ\)C employing the membrane with amine-functionalized quaternary ammonium (QA). A recent publication by Dang et al. [129] demonstrated that the position of QA cations in the polymer structure, ring size, the presence of an additional heteroatom, and ring substitution pattern played a crucial role in the performance of the PPO based AAEs. The results are beneficial for selecting optimal QA groups to enhance the lifetime and performance of the AAEs. Wang et al. [130] proposed a strategy of supramolecular modalities for strengthening the mechanical stability of the PPO based AAEs substantially. A secondary amide was introduced into the AAEs to serve as a hydrogen-bonding crosslinking motif, which was evidenced by the 101% elongation at break, whereas the AAEs without hydrogen-bonding crosslinking showed the elongation at break in the range of 10–20%.

5.1.4. Poly[(tetrafluoroethylene)]

Poly[(tetrafluoroethylene)] (PTFE) has been widely used in chemical industry and other related industries due to its unique properties, which can be conclude as follows: (1) high chemical stability; (2) excellent thermal stability; (3) minimal water absorption; and (4) no toxicity. Due to the high thermal and chemical stability, as well as low WU, PTFE has been introduced to synthesize AAEMs [61,131-134]. Wang et al. [61] synthesized a thin (30 \text{\mu}m) composite membrane by impregnating quaternary 1,4-diazabicyclo[2.2.2]-octane polysulfone (QDPSU) solution in PTFE. The results from the scanning electron microscope (SEM) exhibited that the obtained membrane possessed a dense and homogenous structure. It was shown that the composite membrane exhibited better mechanical strength (a 32 MPa maximum load), lower WU (61 \pm 3\%) and less swelling degree (17 \pm 2\%) than pristine QDPSU membrane. Furthermore, a considerable peak power density of 146 and 103 mW cm\(^{-2}\) were achieved with Pt (0.5 mg cm\(^{-2}\) both at anode and cathode along with hydrogen (80 sccm, RH = 100%) and oxygen or air (100 sccm, RH = 100%) as oxidant, respectively. Zhao et al. reported...
that the quaternized polyvinyl benzyl chloride (QPVBC) could provide sufficient ionic exchange group, but it became brittle after casting membrane [132]. Hence, they prepared quaternary ammonia polysulfone (QAPS)/PTFE composite membrane by employing porous PTFE membrane as the substrate and QAPS polymer as the anionic conductor [133]. It was indicated that the obtained membrane possessed better mechanical strength, lower SR and WU than the previous QAPS alkaline AAEM. The fuel cell fabricated with the 20 µm thickness membrane and Pt (0.4 mg cm$^{-2}$) both at anode and cathode with hydrogen (RH = 100%) supplied at a flow rate of 100 sccm and oxygen supplied at a flow rate of 200 sccm resulted in a peak power density of 315 mW cm$^{-2}$ at 50°C. Nevertheless, the QAPS was inclined to leach out gradually during the operation of the fuel cell, resulting from the poor interaction between the QAPS guest and the PTFE host. As consequence, Li et al. [134] proposed a new approach for making ultra-thin composite membranes of alkaline polymer electrolytes (APEs), which could avoid the lack out problem. They impregnated the APE ionomer TQAPS into a porous PTFE film, followed by a self-crosslinking process, forming a semi-interpenetrating network. It was indicated that the obtained membrane (xQAPS80PTFE, 25 µm thick) showed low area resistance (0.09 Ω cm2), a low swelling degree (3.1% at 60°C) and high mechanical strength (31 MPa). A peak power density of 550 mW cm$^{-2}$ was achieved in a H$_2$/O$_2$ AAEMFC fabricated with Pt (0.4 mg cm$^{-2}$) both at anode and cathode employing the membrane with both humidified hydrogen and oxygen fed at rates of 120 sccm at 60°C.

5.1.5. Polysulfones
Poly(arylene ether sulfone) exhibits promising mechanical and thermal stability, as well as hydrolysis resistance. Recently, some attempts have been made to the synthesis of membranes based on poly(arylène ether sulfone) [135–137]. Zhou et al. [135] prepared the poly(arylène ether sulfone) based membranes, containing fluorenlyl groups (QAPSF), functionalized with benzylimethylammonium groups via the polycondensation, chromomethylation, and amination reactions. It was reported that the QAPSF membranes were stable at pH 11 and showed slow degradation at pH > 14. A peak power density of 4.1 mW cm$^{-2}$ was obtained in a AAEMFC fabricated with Pt (1 mg cm$^{-2}$) both at anode and cathode operating on H$_2$ (6 sccm, RH = 100%) supplied to anode and O$_2$ (3 sccm, RH = 100%) and CO$_2$ (6 sccm, RH = 100%) supplied to cathode. Surprisingly, the addition of CO$_2$ resulted in a promotion of power density, from 2.2 to 3.2 mW cm$^{-2}$, because CO$_2$ was involved in the chemical progress and transported through the AAEM. Yang et al. [136] synthesized a series of poly(arylène ether sulfone) containing bulky imidazolium groups (PSf-I-m-x) based on a novel monomer 2,2'-bis-(2-ethyl-4-methyl-imidazole-1-ylmethyl)-biphenyl-4,4'-diol (EMISO), followed quaternization by n-bromobutane. The attached bulky groups around the imidazolium ring reduced the access of OH$^-$ to imidazolium, which led to the enhancement of alkaline stability, showing an OH$^-$ conductivity of 0.014 S cm$^{-1}$ at 30°C and retaining the 80% of the conductivity for 144 h. It was revealed that some inorganic materials could be added into polymer matrix, improving the mechanical, thermal and chemical properties. Li et al. [137] synthesized a series of cross-linked multiblock copoly(arylène ether sulfone) ionomer (CLQCPAES)/nano-ZrO$_2$ composite AAEMs via block copolymerization, bromomethylation, ultrasonication blending, self-crosslinking, quaternization, and alkalization. It was shown that the CLQCPAES/nano-ZrO$_2$ composite membranes were complex cross-linking networks of hydrophobic domains/hydrophilic domains/nano-ZrO$_2$ with a clear zonal distribution of uniform nano-sized particles in the hydrophilic domains. The WU, mechanical properties, hydroxide conductivity, and alkaline stability were enhanced significantly by the modification with block-ionomer structure, cross-link treatment and the introduction of nano-ZrO$_2$ particles. Particularly, the CLQCPAES/7.5% ZrO$_2$ membrane showed an IEC value of 1.23 mmol g$^{-1}$, hydroxide-ion conductivity of 55.2 mS cm$^{-1}$ at 80°C, and tensile strength of 32.0 MPa, which possessed almost the best comprehensive properties.

Polysulfone membrane exhibits prime mechanical, biological, and chemical stability, and has a wide operating range at temperature (> 80°C), which attracts worldwide attentions. Zhang et al. [138] prepared a porous polysulfone AAEM filled with [3-acylamido-proproyl]trimethylammonium chloride and N,N$^\prime$-methylenabis-cyramide with a grid-plug microstructure via phase-inversion, interfacial diffusion, and in-situ polymerization. It was indicated that the PSU-PATC(1:2) membrane with optimal content of PATC performed best (55 mW cm$^{-2}$) in a single fuel cell fabricated with Pt (2 mg cm$^{-2}$) both at anode and cathode with H$_2$ (800 sccm, RH = 100%) supplied to anode and O$_2$ (600 sccm, RH = 100%) supplied to cathode due to the maximum ionic conductivity. He et al. [139] suggested that one of the obstacles for the application of AAEMs was the poor ionic conductivity, which was partially attributed to the poorly-defined morphologies of AAEMs, resulting in the tortuous ion transport pathways. As a consequence, they proposed a novel strategy, grafting hydrophilic poly(ethylene glycol) side-chains along a model benzylimethylammonium polysulfone-based AAEM to form nanoscale (5–10 nm diameter) anion transport channels, to enhance the ionic conductivities of AAEM. It was indicated that the IEC-normalized hydroxide conductivity increased by 100% from 20.2 to 40.3 mS g$^{-1}$ mmol$^{-1}$ and the power density increased by 50% from 118 mW cm$^{-2}$ to 180 mW cm$^{-2}$ in a fuel cell fabricated with Pt (0.5 mg cm$^{-2}$) at anode and Pt (2 mg cm$^{-2}$) at cathode with humidified H$_2$ supplied to anode at a flow rate at 150 sccm and humidified O$_2$ supplied to cathode at a flow rate at 200 sccm, simultaneously.

Vindoh et al. [140] synthesized a quaternized polysulfone/ZrO$_2$ composite membrane via solution casting method and determined its characteristic properties via XRD, TGA, and electrochemical impedance spectroscopy (EIS). The results from the tests indicated that the ZrO$_2$ nano fillers were distributed homogeneously, showing no obvious agglomeration. In addition, the composite membrane exhibited long-term thermal and chemical stability. Typically, a peak power density of 250 mW cm$^{-2}$ was obtained in a single H$_2$/O$_2$ fuel cell fabricated with Pt (0.375 mg cm$^{-2}$) at anode and Pt (0.125 mg cm$^{-2}$) at cathode at 60°C as the QPSU/10% ZrO$_2$ has been employed.

5.2. Functional groups

5.2.1. Quaternary ammonium (QA)
QA groups are more thermally and chemically stable than tertiary amonium (TA) and primary ammonium (PA), resulting in the most common utilization of quaternary ammonium as hydroxide ions transfer carriers. Varcoe et al. [141] developed a novel alkaline polymer, employing N,N,N$^\prime$,N$^\prime$-tetramethylhexahex-1,6-diamine as the cross-linking agent and poly-(vinylbenzyl chloride) as the polymer backbone. After the treatment of KOH exchange, the obtained polymer was coated on the electrodes working as the AAEM, which not only increased the power density of a single fuel cell using Pt (0.5 mg cm$^{-2}$) both at anode and cathode with H$_2$ (2000 sccm, RH = 100%) fed to anode and O$_2$ (2000 sccm, RH = 100%) fed to cathode from 1.6 to 55 mW cm$^{-2}$ at 50°C, but also avoided undesirable carbonate precipitation. Pan et al. [142] replaced a part of the QA in QAPS with a TA, and the two substances crosslinked two nearest neighboring chains generating xTQAPS membrane upon solidification. It was found that the self-crosslinked membrane did not show any obvious degradation of mechanical stability and IEC in pure water at 90°C for 500 h, which suggested the membrane exhibited extraordinary both physical and chemical stability, breaking the contradiction between the IEC and dimensional stability. This phenomenon could be attributed to the stereo-hindrance effect of the two benzyl groups in proximity suppressing the Hofmann elimination reaction. Zhou et al. [143] prepared AAEMs with varying amounts of
QA groups (0.51, 0.70, and 0.90 mmol g$^{-1}$) grafted onto a SEBS block copolymer and investigated the impacts of AAEMs with various IECs on the performance of H$_2$/O$_2$ fuel cells. The peak power density of the AAEMFCs utilizing Pt (0.5 mg cm$^{-2}$) both at anode and cathode with H$_2$ (200 sccm, RH = 100%) supplied to anode and O$_2$ (200 sccm, RH = 100%) supplied to cathode employing these AAEMs with IEC of 0.51, 0.70, and 0.90 mmol g$^{-1}$ were 169, 222, and 285 mW cm$^{-2}$, respectively. It was indicated that a higher content of QA groups in the membranes led to higher ionic conductivity, resulting in the lower overpotential and higher power density. They revealed that the transportation resistance of the OH$^-$ ions was a controlling factor when fewer functional groups were contained in the membrane or the cell voltage was higher. Li et al.\cite{144} reported highly stable, anion conductive and comb-shaped copolymers containing long alkyl side chains pendant to the nitrogen-centered cation via a Men-shutkin reaction to form comb-shaped structures. It showed that the membrane with long alkyl chain of up to 16 carbon atoms, which had the longest hexadecyl chain, exhibited higher hydroxide-ion conductivity, more distinct ionic domains, and lower WU than that with a hexyl side chain. The peak power density of fuel cell fabricated with Pt (0.5 mg cm$^{-2}$) both at anode and cathode using both humidified H$_2$ O$_2$ fed at flow rates at 200 sccm with C16D40 membrane was 77 mW cm$^{-2}$, which was slightly higher than that using C6D60 (67 mW cm$^{-2}$). Increasing the flow rates of hydrogen and oxygen, the peak power density of C6D60 could reach 145 mW cm$^{-2}$ when the flow rates of anode and cathode were both at 2000 sccm. However, the C16 membrane was inferior in the film-forming ability due to the poor compatibility between long alkyl side chain and polymer backbone. Ren et al.\cite{145} reported highly conductive AAEM with styrenic diblock copolymer, a quaternary ammonium-functionalized hydrophilic block and a cross-linkable hydrophobic block, which possessed high ionic conductivity at 98 mS cm$^{-1}$ and controlled membrane swelling with WU at 117 wt% at 22°C. It was ascribed to the reduced tortuosity of the ionic conduction pathways. Moreover, excessive WU was suppressed because the mechanical integrity of the membrane was maintained due to the hydrophobic network. A peak power density of 168 mW cm$^{-2}$ was obtained in a H$_2$/air fuel cell fabricated with Pt (1 mg cm$^{-2}$) both at anode and cathode using newly developed AAEM (C30D70-1.7) with H$_2$ (250 sccm, RH = 95%) supplied to anode and air (250 sccm, RH = 95%) supplied to cathode at 50°C.

5.2.2. Imidazolium

Though the QA groups are more thermally and chemically stable than TA and PA groups, the AAEMs with QA groups are still facing the facile degradation and excessive swelling problems. Hence, a resurgence of exploring substituted functional groups has occurred. Imidazolium salts (IMs) are well-known as a type of ionic liquid, which can act as electrolytes due to their high chemical stability and low vapor pressure. It seems that imidazolium chemistry is more amenable to AAEM fabrication through post-functionalization, resulting in the formation of ion clusters for efficient transport of OH$^-$. Recently, Lu et al.\cite{146} synthesized imidazolium-functionalized AAEMs via functionalization of chloromethylated poly(ether sulfone) (PES) with 1-alkylimidazole. It was revealed that the WU, SR and solubility of AAEMs increased but the OH$^-$ conductivity decreased with the increment of the alkyl length on the imidazolium group. They claimed that the ionic conductivity was determined by the ionic concentration, which was affected by IEC and SR. Accordingly, the quotient of IEC divided by SR (IEC/IR) could be regarded as an indirect indicator of the ionic concentration. Moreover, a peak power density of \sim30 mW cm$^{-2}$ was obtained in a H$_2$O$_2$ AAEMFC fabricated with Pt (0.4 mg cm$^{-2}$) both at anode and cathode employing the fabricated AAEM and anion exchange ionomers (AEIs) with H$_2$ (50 sccm, RH = 100%) supplied to anode and air (100 sccm, RH = 100%) supplied to cathode at 45°C. Zhang et al.\cite{147} reported a polysulfone-imidazolium AAEM (PSf-ImOH) via functionalization of chloromethylated polysulfone with methylimidazole, added different degrees of chloromethylation of PSf to control the membrane properties. They found that the membranes possessed comparable IEC, conductivity, and thermal stability with the conventional AAEMs. In spite of the low power density (16 mW cm$^{-2}$), a new route for non-QA AAEM design and fabrication was offered. Ran et al.\cite{148} developed imidazolium-type AAEMs (Im-AAEM) based on bromomethylated poly(2,6-dimethyl-1,4-phenyleneoxide) (BPPPO) polymer chains via solution casting of NMP solutions. Additionally, a favorable conductivity up to 100 mS cm$^{-1}$ was obtained at 80°C, resulting from the nano-scale phase-separated construction by the solution casting method. It was indicated that different IECs ranging from 1.1 to 2.4 mmol g$^{-1}$ could be obtained by tuning the molar ratio of 1-methylimidazole to CH$_3$Br groups in the starting polymer. A peak power density of 30 mW cm$^{-2}$ was achieved in a single fuel cell using Pt (0.5 mg cm$^{-2}$) both at anode and cathode with Im-AAEM with both humidified hydrogen and air fed at flow rates of 600 sccm at 50°C.

5.3. Other chemistries

In addition to the above-mentioned AAEMs, extensive other types of AAEMs based on various materials have been synthesized. Recently, Zhang et al.\cite{149} reported the conductivity of KOH-doped polybenzimidazole (PBI) was remarkable, reaching to 9×10^{-2} S cm$^{-1}$ at 25°C, which was much higher than that of previously obtained on acid-doped PBI. In addition, the H$_2$/O$_2$ fuel cell using this polymer electrolyte exhibited the same performance as those based on Nafion 117 membrane. Li et al.\cite{150} reported that grafting long side-chain cations onto PBI was an effective way to improve the OH$^-$ conductivity, mechanical and thermal stability, as well as reduce swelling ratio. Wang et al.\cite{151} synthesized different solid polymer electrolyte membranes using chitosan as matrices incorporated with potassium hydroxide as ionic carrier. After hydration for 1 h, the conductivity of the membrane was about 10 mS cm$^{-1}$. When being integrated into the fuel cells, the maximum current density reached 35 mA cm$^{-2}$ and the open circuit voltage of 1 V was achieved. Additionally, they also proposed two approaches to improve the fuel cell performance. One was to add an alkaline and ionic-conductive interfacial gel, and the other was to decrease the thickness of the membrane. Luo et al.\cite{153} synthesized a novel high molecular weight copolymer quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinyl benzylchloride) (denoted as QPMBV) composed of methyl methacrylate (MMA), butyl acrylate (BA), and VBC. It was reported that polymer electrolytes could be designed bottom-up through mini-emulsion polymerization by selecting desirable monomer. Furthermore, the conductivity reached 8.2 mS cm$^{-1}$ at 80°C. The results from the fuel cell performance evaluation demonstrated that the peak power density of 25 mW cm$^{-2}$ was achieved in a single fuel cell fabricated with Pt (0.5 mg cm$^{-2}$) both at anode and cathode with H$_2$ (80 sccm, RH = 80%) supplied to anode and air (80 sccm, RH = 80%) supplied to cathode at 60°C, suggesting that the preparation concept of these membranes was feasible. Moreover, the conductivity and the mechanical strength were balanced by utilizing the designed hydrophobic and hydrophilic segments. Hence, they concluded the membrane properties as follows:\cite{156}: (1) higher molecular weight resulted in the improvement of the mechanical strength as well as reduction of the WU; (2) higher concentration of the conductive sites resulted in the enhancement of conductivity but simultaneously impairment of the mechanical properties; (3) higher glass transition temperature resulted in the promotion of the membrane durability; and (4) the water hydrophilicity of the mechanical support played an important role in the WU. Wu et al.\cite{157} prepared a high ion-conduction alkaline membrane by sulfonation with lower
cost using non-woven polypropylene/polyethylene (PP/PE). It was shown that the ionic conductivity was improved from 8.8 to 17.5 mS cm\(^{-1}\), while the decline of thermal resistance (4%) and mechanical strength (21%) was reduced. Soll ogóe et al. [158] developed an AAEM using a poly(epichlorhydrin) as matrix and incorporated two cyclic diamines, namely 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1-azabicyclo[2.2.2]-octane (Quinuclidine), into the matrix to ensure anionic conduction properties. They illustrated that the transport number is usually 0.99 and the peak power density was nearly 100 mW cm\(^{-2}\) when the membrane was assembled in a H\(_2\)/O\(_2\) fuel cell utilizing Pt (0.17 mg cm\(^{-2}\)) as both anode and cathode electrocatalysts. Hibino et al. [159] developed a series of hydroxide-ion conducting antimony (V)-doped Tin pyrophosphate electrolyte, Sn\(_1\)-A\(_x\)P\(_2\)O\(_5\) (A = V, Nb, Ta, and Sb) compounds, for intermediate-temperature alkaline fuel cells. It was indicated that Sn\(_{0.92}\)Sb\(_{0.08}\)P\(_2\)O\(_5\) exhibited the highest electrical conductivity in the temperature range of 50–200°C. Additionally, the peak power densities of 76 mW cm\(^{-2}\), 94 mW cm\(^{-2}\), 114 mW cm\(^{-2}\), 130 mW cm\(^{-2}\), 132 mW cm\(^{-2}\) and 147 mW cm\(^{-2}\) were obtained with Pt (2 mg cm\(^{-2}\)) both at anode and cathode and humidified hydrogen and air at rates of 50 sccm at 75°C, 100°C, 125°C, 150°C, 175°C, and 200°C, respectively [160]. Zhao et al. [161] reported a series of pore-filled AAEMs via thermal polymerization of chloromethyl monomer in a porous PE substrate followed by amination with trimethylamine. It was indicated that the hydroxide conductivity of 0.057 S cm\(^{-1}\) was obtained at 30°C, in deionized water and the synthesized membrane possessed long term alkaline stability. A peak power density of 370 mW cm\(^{-2}\) was achieved in a H\(_2\)/O\(_2\) fuel cell utilizing Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode with hydrogen (100 sccm, RH = 100%) fed to anode and oxygen (200 sccm, RH = 100%) fed to cathode at 50°C. Kim et al. [162] fabricated pentamethyleneguani dinium functionalized perfluorinated hydroxide-ion conducting ionomers for AAEM. It was shown that the alkaline stability of the ionomers largely depended on the adjacent groups that connected the cation. Meanwhile, the phenylguanidinium functionalized ionomer exhibited better stability than sulfone guanidinium functionalized ionomer due to the charge delocalization of the formed resonance structure. When the membrane was fabricated into a H\(_2\)/O\(_2\) fuel cell using Pt (3.4 mg cm\(^{-2}\)) on the anode and Pt (6.5 mg cm\(^{-2}\)) on the cathode with supplied humidified hydrogen and oxygen, a peak power density of 577 mW cm\(^{-2}\) was obtained. Recently, Chen et al. [163] found that both introducing ionic liquids and adding nano-TiO\(_2\) into the AAEMs contributed to improving the OH\(^-\) conductivity. The ionic liquids dispersed in the membrane functionalized active sites for secondary OH\(^-\) conduction, and the nano-TiO\(_2\) particles could significantly alleviate the ionic liquid loss and stabilize the ionic liquid monomer in the membrane.

The effects of the cations chemistries, the length of alkyl chain of the diamines, the reaction conditions of chloromethylation, and the parameters of polymers on the AAEMs have been extensively investigated [164–169]. Einsla et al. [164] tested the stability of cations for anion exchange membrane fuel cells and illustrated that the stability of benzyltrimethylammonium hydroxides was much better than that of phenyltrimethylammonium hydroxides under similar conditions. Furthermore, they showed the degradation of stability of the cation when the concentration of the ammonium hydroxides was increased. Arges et al. [165] studied the influence of different cation chemistries, 1,4-dimethylpiperazinium (DMP\(^+\)), trimethylammonium (TMA\(^+\)), and trimethylphosphonium (TMP\(^+\)), on ionic conductivity and alkaline stability of AAEMs. They concluded from the obtained experimental evidence as follows: (1) phosphonium cations with similar or greater basicity degraded more rapidly than ammonium cations; (2) phosphonium cations degraded through a fundamentally different mechanism (ylide formation) than ammonium cations (direct nucleophilic substitution); (3) as long as the issue of significant WU did not come into play, the fuel cell performance was enhanced with higher IEC AAEMs. Park et al. [166] investigated the effect of the length of alkyl chain of the diamines on ionic conductivity and thermal characteristics via employing TMA as a monoamine and N,N,N',N'-tetramethylenediamine (TMMDA), N,N',N'-tetramethylethlenediamine (TMEDA), N,N,N'-tetramethyl-1,3-propandiamine (TMDPA), N,N,N',N'-tetramethyl-1,4-butandiamine (TMBDA) and N,N,N',N'-tetramethyl-1,6-hexandiamine (TMHDA) as various diamines. The results showed that the mixture of TMA and TMHDA had a better hydroxyl ion conductivity and thermal stability than others, suggesting that a longer alkyl chain resulted in higher performance. Wang et al. [167] demonstrated that the parameters, including reaction time, reaction temperature, concentration of polymer, concentration of chloromethylation agent, and the amount of catalyst, possessed significant impacts on chloromethylation. When these parameters were well controlled, the gelation could be avoided. Among the parameters, the concentration of the chloromethylation agent played a dominant role in enhancing the attachment of chloromethyl functional group onto the polymer. Luo et al. [168] investigated the effects of polymer composition drift, molecular weight, and polymer crosslinking on the properties of quaternized poly(methylenacrylate-co-vinylbenzyl chloride) (QPMV)-based AAEM. It was indicated that the initial monomer ratio and the resulted copolymer composition could influence the hydrophobic/hydrophilic portions in the membrane. They demonstrated that decreasing initiator potassium persulfate (KPS) and increasing surfactant sodium dodecyl sulfate (SDS) could increase the molecular weight, simultaneously improving the mechanical properties. It was believed that crosslinking method could alleviate the WU problem due to the less distinct phase separation feature. Pan et al. [169] proposed two strategies for developing advanced APEs which were highly resistant to swelling and showed conductivities comparable with Nafion: self-crosslinking and self-aggregating designs. It was indicated that a short-range cross-linker, tertiary amino groups, was grafted onto the QAPS and the membrane swelled by less than 3% at 80°C. In self-aggregating design, long alkyl side-chains were attached to the QAPS, which produced enlarged and aggregated ionic channels.

5.4. AAEM performance

5.4.1. Effect of pre-treatment

Before being integrated into the fuel cell, the membrane would be immersed into water or alkaline electrolyte to improve the conductivity. Under pure water operation, the characterization of membrane has been extensively conducted [170,171]. Li et al. [170] prepared AAEMs with significant ionic conductivities over the order of 10\(^{-2}\) S cm\(^{-1}\) in DI water at room temperature. The fuel cell using Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode yielded an OCV of 1.028 V and a peak power density of 33 mW cm\(^{-2}\) with hydrogen (50 sccm, RH = 100%) supplied on the anode and oxygen (100 sccm, RH = 100%) supplied on the cathode in the absence of liquid electrolyte, such as KOH and NaOH, at 30°C, suggesting the possibility of the membrane for AAEMFCs application. Mamlouk et al. [171] studied the effect of anion functional groups on the conductivity and performance of AAEMs. It showed that TMA functionalized membrane possessed the highest conductivity among amine/sulphide-based functional groups with conductivities values up to 0.25 and 0.043 S cm\(^{-1}\) in plane and through plane, respectively. The highest power density of 478 mW cm\(^{-2}\) was achieved when TMA functionalized electrodes fabricated with Pt (0.4 mg cm\(^{-2}\)) were employed, followed by the second highest power density of 236 mW cm\(^{-2}\) achieved by the TMHDA electrodes. Trimethylamine (TEA) and DABCO electrodes showed analogous power densities of 100 and 116 mW cm\(^{-2}\), respectively. Finally, the dimethyl sulfide (DMS) functionalized electrodes performed the lowest power density of 58 mW cm\(^{-2}\). As a consequence, it was demonstrated that the
ionomer functional groups affected the oxygen permeability, the activation energy and the exchange current density for oxygen reduction and anode flooding. Thus, the type of functional groups used for the ionomer can severely restrict cell performance.

When the pure water changes to alkaline electrolyte, the performance has also been studied [58,119,121]. Fu et al. [58] demonstrated that the ionic conductivity of the membrane was promoted to 0.473 mS cm\(^{-1}\) after alkali (2–4 M) doping due to the KOH penetrated into the polymer. However, there was no significant contribution to the conductivity when the concentration of the KOH was larger than 4 M, which was attributed to the weak ionic mobility. Similarly, Zhang et al. [121] found that the conductivity of the AAEM reached to a maximum value of 0.025 S cm\(^{-1}\) after the KOH (2 M) doping. Qiao et al. [119] claimed that this phenomenon could be explained by the two following reasons: one was that the QA groups would decompose in such harsh basic environment, and the other was that the ionic mobility became weak due to the increase of the viscosity or the formation of ion-pairs. Jiang et al. [172] designed an air-breathing cell for fast screening of electrolytes as shown in Fig. 6(a) and (b), which was suitable for various liquid electrolytes, thus reproducible data could be obtained. Subsequently, the effects of different electrolytes, i.e. 1.0 M tetramethylammonium hydroxide (TMAOH), 1.0 M tetraethylammonium hydroxide (TEAOH), 1.0 M tetrapropylammonium hydroxide (TPrAOH), 1.0 M KOH, and 0.5 M \(\text{H}_2\text{SO}_4\) on the performance of fuel cells were investigated.

First, the inorganic electrolytes were evaluated at various temperatures. The results showed that the performance of the fuel cell utilizing Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode with 1.0 M KOH increased from 13 to 29 mW cm\(^{-2}\) with the temperature rising from 20 to 80°C when hydrogen (250 sccm, RH = 95%) was fed on the anode and air (250 sccm, RH = 95%) was fed on the cathode. In contrast, the fuel cell employing 0.5 M \(\text{H}_2\text{SO}_4\) yielded an increasing power density of 17–28 mW cm\(^{-2}\) with temperature elevating from 20°C to 60°C. Further increasing the temperature to 80°C, there was no obvious performance promotion occurring, which was probably attributed to the electrocatalyst passivation in \(\text{H}_2\text{SO}_4\) at high temperatures. Second, it could be seen from the performance tests that the peak power densities of fuel cells employing 0.5 M \(\text{H}_2\text{SO}_4\), 1.0 M TMAOH, and 1.0 M KOH as electrolytes were 17, 14, and 13 mW cm\(^{-2}\) at 20°C, respectively. It was suggested that electrolyte concentration could change the cell impedance, resulting in the change of cell performance. Finally, the effects of organic molecular size on the performance have been studied [172]. It was shown that the smaller organic molecular size resulted in the higher power density due to the more active sites on the electrode surface. Moreover, when the organic alkaline electrolyte was used, the cell performance decreased significantly caused by \(\text{CO}_2\) and acid.

5.4.2. Effect of carbonate

The absorption of the \(\text{CO}_2\) on the membrane, denoted as carbonate effect, has negative effects on the performance of the AAEMFCs. Due to the formation of carbonates within the CL and AAEM, the conductivity will decrease significantly, resulting in a large performance drop [173,174]. Hence, the carbonate effect has been extensively studied [175–182]. Fukuta et al. [175] found that the maximum power density of the alkaline fuel cell in the case of pure air was 290 mW cm\(^{-2}\), which was as twice as that in the case of ambient air. It was determined that the \(\text{OH}^-\) form membrane could easily absorb \(\text{CO}_2\), change to \(\text{HCO}_3^-\) form, then through the self-purging phenomenon, finally return to \(\text{OH}^-\) form. Vega et al. studied the effects of \(\text{CO}_2\), \(\text{HCO}_3^-\), and \(\text{CO}_3^{2-}\) on the AAEMFC operation [176–179]. They found that a 26% conductivity decrease occurred when the membrane was exposed to hydroxide ions due to the nucleophilic attack degradation mechanisms and Hofmann elimination, while the effect of exposure to carbonate environments was not significant because the carbonate was weaker nucleophiles. However, the overall conductivity of the membrane exposed to hydroxide ions was higher, which was attributed to the carbonate adsorption on the electrode, reducing the active area. Inaba et al. [180] and Matsui et al. [181] showed that the membrane resistance decreased due to the self-purging mechanism at high current densities, while the cell voltage was reduced significantly. It was demonstrated that a high anodic overpotential occurred because of the accumulation of carbonate/bicarbonate ions at the anode, while the overpotential of the cathode was hardly changed, suggesting that it was important to suppress the accumulation. Suzuki et al. [182] investigated the effect of \(\text{CO}_2\) dissolution into anion exchange membrane on fuel cell performance. They found that the conductivity of AAEM and potential difference decreased with an increase in carbonate ion species. It was indicated that the increment of ohmic resistance was noticeable by the supply of \(\text{CO}_2\) to cathode, but not obvious by the supply of \(\text{CO}_2\) to anode. They demonstrated that the formation and exclusion of carbonate ion species and/or carbonic acid in the vicinity of TBP played the dominant role for the electrode overpotential.

5.4.3. Effect of radiation

Recently, the radiation-grafted AAEMs have attracted worldwide attention, which is attributed to several advantages [183,184]: (1) Radiation grafting is one of the most versatile techniques for preparing membrane materials; (2) No film formation process is required due to the use of pre-formed polymer films; (3) The degree of monomer grafting is tunable, which can be achieved by optimizing the grafting parameters; and (4) Simple preparation procedures and absence of highly reactive chemical initiators and catalysts result in reduction of cost. Hence, a large amount of radiation-grafted AAEMs have been synthesized [185–191]. Varcoe et al. [185] synthesized an alkaline AAEM based on ethylene-co-tetrafluoroethylene (ETFE), which was physically strong, quaternary-ammonium-functionalized, and radiation-grafted. The results from \(\text{H}_2\text{O}_2\) fuel cell fabricated with Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode showed that a peak power density of 130 mW cm\(^{-2}\) has been achieved with both humidified hydrogen and oxygen fed at flow rates of 2000 sccm at 60°C. They stated that the performance was substantially limited by the mass transport in the electrodes. In addition, Poynton et al. [186]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig6.png}
\caption{Schematic of (a) an air-breathing cell and (b) the electrode configuration. [172]. Reproduced with permission from Elsevier.}
\end{figure}
synthesized various ETFE AAEs via e-beam irradiation. Afterwards, it was found that the conductivities of the thinnest membrane (17 µm, denoted as S20) reached to 60 mS cm\(^{-1}\), and the fuel cell fabricated with S20 membrane and Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode yielded a peak power density of 230 mWcm\(^{-2}\) along with both humidified hydrogen and oxygen at flow rates at 2000 sccm at 50°C. The improvement in the performance was attributed to the better mass transport. Similarly, Nikolic et al. [187] prepared three different types of modified PVA based membranes, namely plain PVA, γ-PVA cross-linked using gamma irradiation, and PVA doped with Mo (PVA-Mo). The results from the power output tests showed that the peak power density of the fuel cell fabricated with Pt (0.2 mg cm\(^{-2}\)) both at anode and cathode employing modified γ-PVA and PVA-Mo membranes were 6.4 and 6.8 mW cm\(^{-2}\), which were better than that using plain PVA membrane (5.0 mW cm\(^{-2}\)) due to larger absorption of alkaline solution. Deavin et al. [188] prepared radiation-grafted alkaline AAEs containing pendant groups with either benzyltrimethylammonium (BTM) or benzylmethylimidazolium (BMI) and made comparison of two AAEs. It was indicated that, though the BMI-AAEM possessed comparable conductivity to the BTM-benchmark AAEM, the BMI-AAEM showed severe in-situ degradation due to the intrinsically poor chemical stability in strong alkaline media. It was demonstrated that there was no real advantage in using anion-exchange polymer electrolytes containing pendant imidazolium groups in strong alkaline systems. Fang et al. [189] developed radiation-grafted ETFE-based membrane via quaternization and crosslinking with DABCO, alkylation with p-Xylylenedichloride (DCX), and quaternization again with TMA, of which the ionic conductivity is 3.9 × 10\(^{-2}\) S cm\(^{-1}\) at 20°C in DI water. Importantly, the conductivity increases to 7.4 × 10\(^{-2}\) S cm\(^{-1}\) at 80°C. Meanwhile, the conductivity could be retained for 120 h after being treated in KOH solution at 60°C. An OCV of 1.034 V and a peak power density of 48 mW cm\(^{-2}\) were obtained under 100% relative humidity with H\(_2\) and O\(_2\) both fed at rates of 100 mL min\(^{-1}\). The performance was derived from good leak tightness of electrodes and enhanced electrochemical reaction kinetics. Recently, Wang et al. [190] utilized 30 kGy absorbed dose, 5 vol% Bacitracin. As a result, the LDPE-AAEM showed a OH- anion conductivity of 68 mS cm\(^{-1}\) at 80°C with 95% RH and a Cl- anion conductivity of 48 mS cm\(^{-1}\) at 80°C when fully hydrated. It was indicated that the CNTs and the KOH-doped PBI layer functioned as electron and hydroxide conductive pathways, respectively. The sufficient formation of the interfacial structure resulted in the excellent mass transport around the TPBs. A peak power density of 256 mW cm\(^{-2}\) was achieved with the newly developed electrode fabricated with Pt (0.45 mg cm\(^{-2}\)) both at the anode and cathode when hydrogen (RH = 95%) and oxygen (RH = 95%) were supplied at flow rates of 100 and 200 sccm, respectively, which is much higher than that of the AS-4 cell primarily due to the better mass transport. Yang et al. [194] reported that the anionomer content played an important role in the cell activation, ohmic and concentration losses and resulted in a high-performance electrode with fine microstructure synthesized by 20 wt% ionomer content and the proper dispersion solvent, including solutions and colloid. It was indicated when the n-butyl acetate (NBA) worked as solvent and ionomer content was kept at 20 wt%, the colloidal electrode increased the pore volume and pore diameter, serialized ionomer networks and decreased ohmic and concentration losses, resulting in a peak power density of 407 mW cm\(^{-2}\) in an AAEMFC fabricated with Pt (0.4 mg cm\(^{-2}\)) both at anode and cathode with hydrogen (RH = 100%) and oxygen (RH = 100%) fed at a flow rate of 200 sccm at 50°C. Ewing et al. [195] synthesized dendritic nano-sized nickel nanoparticles via a hydrazine reduction method in ethylene glycol.

In summary, various materials based AAEs have been synthesized, and the performance of the fabricated MEAs have been evaluated in H\(_2\)/O\(_2\) fuel cells subsequently. Meanwhile, novel structures in the MEA have been proposed, which possess superior properties than conventional MEAs. Though significant progress has been made in developing AAEMs with high performance as well as low cost, it should be noted that the AAEMs are still facing variety of challenges, including hydroxide-ion conductivity, as well as mechanical, chemical, and thermal stability.

6. Single-cell: designs and performance

6.1. Effect of anode ionomers

In the anode, novel ionomers and fine microstructures have been proposed for the enhancement of the mass transport and current collection [192–196]. Recently, Sun et al. [192] prepared pendant quaternary ammonium-based ionomers employing styrene-ethylene/butylene-styrene (SEBS) as the starting material, which were dimensionally stable without drastic sacrifice of the ionic conductivity as compared to the polysulfone (PSF)-based ionomers. It was indicated that a peak power density of 210 mW cm\(^{-2}\) was obtained in a single cell using Pt (1.28 mg cm\(^{-2}\)) both at the anode and cathode with hydrogen (RH = 100%) and oxygen (RH = 100%) fed at a rate of 200 sccm at 50°C. They demonstrated that the superior performance of the ionomers was attributed to the lower internal resistance and charge transfer resistance owing to the excellent dimensional stability and the balanced conductivity-hydrophobicity. Matsumoto et al. [193] described a novel structure composed of CNTs and KOH-doped PBI, forming a nanometer thickness wrapping layer, on which the Pt nanoparticles were loaded, as shown in Fig. 7(a) and (b). It was shown that the CNTs and the KOH-doped PBI layer functioned as electron and hydroxide conductive pathways, respectively. The sufficient formation of the interfacial structure resulted in the excellent mass transport around the TPBs. A peak power density of 256 mW cm\(^{-2}\) was achieved with the newly developed electrode fabricated with Pt (0.45 mg cm\(^{-2}\)) both at the anode and cathode when hydrogen (RH = 95%) and oxygen (RH = 95%) were supplied at flow rates of 100 and 200 sccm, respectively, which is much higher than that of the AS-4 cell primarily due to the better mass transport. Yang et al. [194] reported that the anionomer content played an important role in the cell activation, ohmic and concentration losses and resulted in a high-performance electrode with fine microstructure synthesized by 20 wt% ionomer content and the proper dispersion solvent, including solutions and colloid. It was indicated when the n-butyl acetate (NBA) worked as solvent and ionomer content was kept at 20 wt%, the colloidal electrode increased the pore volume and pore diameter, serialized ionomer networks and decreased ohmic and concentration losses, resulting in a peak power density of 407 mW cm\(^{-2}\) in an AAEMFC fabricated with Pt (0.4 mg cm\(^{-2}\)) both at anode and cathode with hydrogen (RH = 100%) and oxygen (RH = 100%) fed at a flow rate of 200 sccm at 50°C. Ewing et al. [195] synthesized dendritic nano-sized nickel nanoparticles via a hydrazine reduction method in ethylene glycol.

![Fig. 7. Schematic of (a) the preparation of the MWNT/PyPBI/Pt samples and (b) TEM image of the MWNT/PyPBI/Pt.](image-url) Reproduced with permission from Wiley.
from a nickel chloride precursor. They characterized the resulting particles by XRD, TEM, and SEM. The results showed that the single nickel particles gradually connected to form nickel chains, and subsequently the chains connected to form the dendritic structures. Furthermore, the nickel particle was amorphous, which provided more active sites. In addition, they used the dendritic nickel with a network structure as the anode for an AAEMFC, resulting in a current density of 11.5 mA cm\(^{-2}\). Kucernak et al. [196] proposed porous silver membranes as potential substrates for gas transport electrodes in alkaline fuel cells. The silver membrane possessed three integrated functions, including electrocatalytic function, mechanical support and current collection. An OCV of 1.05 V and a maximum power density of 60 mW cm\(^{-2}\) were obtained in an alkaline AAEMFC constructed with these electrodes with Pt (0.05 mg cm\(^{-2}\)) both at anode and cathode with hydrogen (RH = 75%) and oxygen (RH = 75%) at 50°C. It was indicated that the gas transport layers were as three times expensive as carbon-based layers, but especially considering at 50°C. It was indicated that the gas transport layers were as three times expensive as carbon-based layers, but especially considering their significantly reduced thickness, 700-fold superior electrical conductance, and thermal conductivity, the Ag electrode still had the potential to be used in AAEMFCs.

In summary, the ionomers play an important role in enhancing the mass transport and lowering internal resistance that further leads to superior power output. In addition, the well-dispersed electrocatalysts result in the sufficient TPBs, which is beneficial to improving the cell performance.

6.2. Effect of cathode ionomers

In the cathode, novel ionomers and structures have been reported recently [197–202]. Unlü et al. [197] synthesized AIEs with different quaternary ammonium density and evaluated the performance via impedance spectroscopy and voltammetry. The obtained results indicated that the limited cell performance on the cathode was the low catalyst utilization, which was primarily attributed to the low ionic conductivities and high WUs of the AIEs. Hence, tremendous efforts have been devoted into synthesizing various ionomers with high hydroxide ions conductivity and low WU for promoting the mass transport in order to enhance the catalyst utilization. Gu et al. [198] reported a phosphonium based ionomer (TPQPOH) and simply used it to prepare the catalyst layer with Ag. The Ag–phosphonium ionomer interface yielded a high peak power density of 208 mW cm\(^{-2}\), which was more than double of that of the Ag–ammonium ionomer interface and slightly higher than that of the Pt based electrode. Unlü et al. [199] used an ionomer impregnation method to elevate the performance by tailoring the ionomer distribution and balancing the ionic, electronic, and reactant transport within the catalyst layer as shown in Fig. 8(a) and (b). It was shown that the maximum power density was promoted from 44 mW cm\(^{-2}\) to 120 mW cm\(^{-2}\) via the ionomer impregnation method, and further increased to 315 mW cm\(^{-2}\) via adding hydrophobic additive with Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode at 70°C due to the higher catalyst utilization and free volumes close to diffusion layer. Zhou et al. [200] prepared a series of partially fluorinated copoly(aryl ether) alkaline ionomers (QAPAE) via chloromethylation of copoly(aryl ether) followed by amination with trimethylamine. The WU of QAPAE was significantly reduced because of the presence of the hydrophobic octafluoro-biphenyl groups in the backbone. It was demonstrated that the QAPAE–4 and QAPSF ionomers employed as cathode in a hybrid AAEM/PEM fuel cell fabricated with Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode utilizing humidified hydrogen as fuel and oxygen as oxidant yielded the peak power density of 315 mW cm\(^{-2}\) and 215 mW cm\(^{-2}\) at 60°C, respectively. The interfacial adhesion of MEAs still remained a challenge because the hydrocarbon ionomer possessed low binding ability. Kubo et al. [201] reported the effect of hydroxide-ion conducting layered double hydroxides (LDHs) on the ORR. Two types of LDH were prepared, denoted as Ni–Al CO\(_3\)\(_2\) LDH and Mg–Al CO\(_3\)\(_2\) LDH. It was indicated that the addition of LDHs to the catalyst layer increased the reduction current for ORR due to the introduced OH\(^{-}\) conducting paths and the increased TPB region. In addition, the Ni–Al CO\(_3\)\(_2\) LDH possessed better performance than the Mg–Al CO\(_3\)\(_2\) LDH. Tamin et al. [202] came up with a hypothesis that the limited power output was mainly attributed to limitation of the mass transport of reactant water to the cathode reaction sites, which kept the membrane hydrated for sufficient conductivity. Hence, the hydrophobic binder, PTFE, was replaced by Toray carbon paper, aiming at improving the characteristics of the water transport. The H\(_2\)/O\(_2\) fuel cell with the cathode fabricated from Toray carbon paper and Pt(C) catalyst (20 wt% Pt on Vulcan XC-72R carbon support) resulted in a peak power density of 125 mW cm\(^{-2}\), which was 25–36% more than the power output compared to the that of the fuel cells fabricated with the PTFE-containing cathodes.

![Fig. 8. Schematic of the electrode structures made by (a) thin-film and (b) ionomer impregnation methods](image-url) Reproduced with permission from Elsevier.
In summary, the ionomers on the cathode play an important role in the property of the cathode. It should be noted that lower WUs, higher ionic conductivities, and higher catalyst utilizations result in the improvement of the power output. In addition, since water is consumed in cathode, humidification of oxygen is necessary in cathode. Otherwise, the ORR is difficult to proceed in the absence of water at the cathode.

6.3. Effect of structural designs

The performance of the AAEMFC lies on three primary parameters as follows: (1) the electrocatalysts for HOR and ORR that determine the electrochemical kinetics; (2) the structure of MEA that influences the transport of mass, ions, and electrons; and (3) the operation conditions that affect the electrochemical and transport behaviors and thus the power output.

In addition to the development of novel electrocatalysts for the HOR and ORR, the effects of structural designs also have been investigated [16,203,204]. It is widely believed that a superior design of flow field, anode, and cathode leads to a better performance, resulting from the enhanced mass transport and the sufficient TPs. It should be noted that the mass transport also plays an important role in the fuel cell performance. For the mass transport in the anode, it is vitally important to design the flow field and diffusion layer to lead hydrogen to distribute as even as possible, maximizing the cell voltage. On the cathode, the critical mass transport issues can be concluded as follows: (1) it is necessary to design the flow field and diffusion layer; (2) it is critical to enhance the transport of oxygen in the through-plane direction; (3) in the in-plane direction, the distribution of oxygen needs to be uniform over the CL. For the mass transport through the membrane, the key issue is to suppress the hydrogen crossover so that the mixed potential problem can be alleviated and hydrogen will not be wasted. The reduction of crossover can be achieved when the design of the MEA is optimal, particularly the cathode backing layer and microporous layer. Mamlouk et al. [203] studied the effects of ionomer content, anode and cathode CL thicknesses, and membrane thickness on the performance of an AAEMFC. It was indicated that an optimum ionomer content depended on a balance between the OH⁻ ion/water mobility and the oxygen solubility/diffusivity through it. When the ionomer content in the CL was too high, the mass transport through the ionomer could be impeded. Moreover, the electrocatalyst and carbon particles could be electron-isolated. When too low, the insufficient ECSA resulted in the lower utilization of the electrocatalysts. In addition, the limiting OH⁻ mobility led to the larger ohmic loss. It was suggested that thick anode CL was necessary because the flooding problem could be avoided when the fuel cell was operated at high current densities, meaning that more water was produced in the anode CL. Meanwhile, the effect of the cathode CL on the performance has been studied. It was indicated that an optimum of the cathode CL thickness depended on the operating conditions, including oxygen partial pressure and ionomer used. A thicker CL with smaller particle size might suffer from the oxygen starvation problem, when the oxygen supply was inadequate. While a thinner layer with larger particle size might not possess the enough ECSA. The AAEM, the key component of the AAEMFC, worked as the barrier separating the anode and cathode, as well as the pathway for OH⁻ transport. Thus, the optimal membrane thickness lay on the equilibrium of the OH⁻ transport and gas permeability. The single fuel cell tests showed that the membrane with hydrated thickness of 57 μm resulted in a peak power density of 337 mW cm⁻² with the air at 60°C.

6.4. Effect of water flooding

Additionally, water management is critical to achieve better performance and durability. In AAEMFCs, water is produced in the anode and consumed in the cathode. Therefore, the flooding problem that limits the cell performance is more likely to arise in the anode. To achieve a better power output, it is essential to undertake water management to mitigate the flooding problem. Zhang et al. [16] confirmed that the direction of water movement was from the anode to the cathode via a water collection method, which indicated the diffusion water was much larger than the electro-osmosis water. At high current densities, much more water moved from the anode to cathode, which not only alleviates the flooding problem at the anode but also reduces membrane resistance. Oshiba et al. [204] proposed two methods to suppress the anode flooding. One was to increase the anode flow rate: when the RH at the anode outlet reached 100%, the current density increased with the anode flow rate, indicating that the anode flooding problem was alleviated. The other was to reduce the membrane thickness: when the membrane became thinner, the water produced in the anode was easily permeated to the cathode. Recently, Omasta et al. [205] pointed out that the amount and balance of water was a critical issue to obtain high performance that could be achieved by tuning the cell water to optimize the dynamic balance between membrane hydration and electrode flooding/dry-out. It was indicated that the cell water was able to be actively manipulated via several variables, including gas feed dew points, catalyst layer hydrophobicity, anode and cathode gas flow rates, flow channel design, catalyst layer engineering, and the physicochemical properties of the AAEM and AEIs.

6.5. Single-cell durability

Durability of fuel cells is one of the critical issues in realizing the commercialization [206–208]. Hence, Slade et al. [206] demonstrated that the AAEMs must be evaluated in H₂/O₂, H₂/air, and methanol/air fuel cells for several thousand hours to ensure adequate in-situ membrane stability. Though some synthesized AAEMs exhibited exceptional fuel cell performance, the poor durability has still not been solved yet. Luo et al. [207] proposed two strategies to improve the durability of QPMBV membranes. The first was to increase glass transition temperature and molecular weight via eliminating butyl acrylate from the monomers. The second was to reduce the WU and SR via crosslinking to lock the functionalized QPMV into a poly (divinylbenzene) (PDVB) polymer network. It was indicated that the fuel cell employing crosslinked QPMV-PDVB AAEM could continuously work for 420 h at 50°C and 146 h at 70°C, which was eight and three times longer than that in previous study, respectively, as shown in Fig. 9(a) and (b). Fujimoto et al. [208] investigated the backbone stability of benzyl-trimethyl ammonium (BTMA) functionalized polyaromatics in two structurally differing polymer architectures: quaternized poly(aryleneether) (PAE) and PP. It was indicated that the cleavage of aryl-ether linkages substantially impacted the mechanical properties and moderately the hydroxide conductivity. The results showed that the PAE MEA experienced failure at 55 h due to the degraded mechanical stability while the PP MEA exhibited stable performance during 300-h operation.

6.6. Single-cell performance

Herein, we summarize the peak power densities reported in the recent literatures. Tables 1–4 show the selected hydrogen/oxygen fuel cell performance with different HOR electrocatalysts, ORR electrocatalysts, AAEMs, and MEA structures, respectively. It can be seen from Tables that power density has been boosted from ~0.4 mW cm⁻² to 1450 mW cm⁻² in recent years, suggesting that the AAEMFC is a promising energy technology and tremendous efforts have been paid into this field [70,74,97,190,191,194, 205,209,210]. Hu et al. [74] fabricated an AAEMFC, which exhibited the highest power density of 40 mW cm⁻² with humidified hydrogen and oxygen both at a flow rate of 50 scm at 60°C, when Ni–W
(17.5 mg cm\(^{-2}\)), CoPPY/C (2 mg cm\(^{-2}\)), and xQAPS were employed as anode electrocatalyst, cathode electrocatalyst and AAEM, respectively. Carmo et al. [209] developed an AAEMFC with 20 wt% Pt/C (0.8 mg cm\(^{-2}\)) and 25% FAA-3 ionomer in the catalyst layer for both the cathode and anode. It was indicated that a peak power density of 223 mW cm\(^{-2}\) was obtained using hydrogen (100% humidity) as fuel at 200 sccm and oxygen (100% humidity) as oxidation at 200 sccm. In addition, the platinum requirement could be decreased to 0.5 mg cm\(^{-2}\) without sacrificing the performance. Recently, Ohyama et al. [70] developed a fuel cell employing 0.5 mg cm\(^{-2}\) Ru/C (3 nm) as anode electrocatalyst, 0.5 mg cm\(^{-2}\) Pt/C as cathode electrocatalyst, and an AAEM (Tokuyama A201), resulting in an excellent peak power density of 250 mW cm\(^{-2}\). The significant enhancement was substantially attributed to the larger surface area per unit weight of Ru/C, which resulted in the higher limiting current density. He et al. [97] reported a novel cathode electrocatalyst, CoO/rGO(N). The results from the fuel cell tests showed that the peak power density reached 387 mW cm\(^{-2}\) with the hydrogen (62% RH) fed to the anode at a rate of 250 sccm and the oxygen (100% RH) fed to the cathode at a rate of 200 sccm, when the Pt and CoO/rGO(N) are employed as

![Image](image_url)

Fig. 9. (a) Durability tests of uncrosslinked QPMV and 10% crosslinked QPMV-PDVB AAEMs at 70 °C, (b) Durability test of 10% crosslinked AAEM at 50 °C [207]. Reproduced with permission from Elsevier. (c) Cell performance of the AEMFC using the PtRu anode or Pt anode [210]. Reproduced with permission from The Royal Society of Chemistry. (d) Performance of H\(_2\)/O\(_2\) AEMFC test data at 60 °C for E-R (squares) and E-6 (circles) using PtRu/C anodes and Pt/C cathodes and with no gas back-pressurization of the fully humidified gases [190]. (e) Performance of the AEMFC with different hypothesized distribution of water across the AEM and electrodes in an AEMFC [205]. (f) Performance of H\(_2\)/O\(_2\) AEMFC at 80 °C with the LDPE-AEM with Pt/C (circles) or Ag/C (squares) as cathodes as well as PtRu/C anode [191]. Reproduced with permission from Elsevier.

<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T(°C)</th>
<th>Power density (mWcm(^{-2}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2) (RH = 100%) / O(_2) (RH = 100%)</td>
<td>Ag (1 mg cm(^{-2}))</td>
<td>Ag (1 mg cm(^{-2}))</td>
<td>quaternary ammonium polysulphone membranes</td>
<td>60</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Pd/Ni (1.5 mg cm(^{-2}))</td>
<td>Pd (1.5 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>180</td>
<td>69</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Ni (1.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>70</td>
<td>69</td>
</tr>
<tr>
<td>500 sccm H(_2) (RH = 100%) / 500 sccm O(_2) (RH = 100%)</td>
<td>11 nm Ru/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Tokuyama A201</td>
<td>50</td>
<td>135</td>
<td>70</td>
</tr>
<tr>
<td>500 sccm H(_2) (RH = 100%) / 500 sccm O(_2) (RH = 100%)</td>
<td>3 nm Ru/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Tokuyama A201</td>
<td>50</td>
<td>135</td>
<td>70</td>
</tr>
<tr>
<td>500 sccm H(_2) (RH = 100%) / 500 sccm O(_2) (RH = 100%)</td>
<td>3 nm Ru/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Tokuyama A201</td>
<td>50</td>
<td>135</td>
<td>70</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Pd/C (0.3 mg cm(^{-2}))</td>
<td>Ag (3 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Pd/C – CeO(_2) (0.3 mg cm(^{-2}))</td>
<td>Ag (3 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>500</td>
<td>73</td>
</tr>
<tr>
<td>50 sccm H(_2) (RH = 100%) / 50 sccm O(_2) (RH = 100%)</td>
<td>Ni – W (17.5 mg cm(^{-2}))</td>
<td>CoPPY/C (2 mg cm(^{-2}))</td>
<td>xQAPS membrane</td>
<td>60</td>
<td>40</td>
<td>74</td>
</tr>
<tr>
<td>50 sccm H(_2) (RH = 100%) / 50 sccm O(_2) (RH = 100%)</td>
<td>Ni – W (17.5 mg cm(^{-2}))</td>
<td>CoPPY/C (2 mg cm(^{-2}))</td>
<td>xQAPS membrane</td>
<td>60</td>
<td>27.5</td>
<td>74</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Pd/C – CeO(_2) (0.3 mg cm(^{-2}), Pd 6%)</td>
<td>Ag (3 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>390</td>
<td>84</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Pd/C – CeO(_2) (0.3 mg cm(^{-2}), Pd 10%)</td>
<td>Ag (3 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>500</td>
<td>84</td>
</tr>
<tr>
<td>200 sccm dry H(_2) / 1000 sccm air</td>
<td>Pd/C – CeO(_2) (0.2 mg cm(^{-2}), Pd 20%)</td>
<td>Ag (3 mg cm(^{-2}))</td>
<td>AAEM</td>
<td>73</td>
<td>460</td>
<td>84</td>
</tr>
</tbody>
</table>
Table 2
Selected hydrogen/oxygen fuel cell performance with different ORR electrocatalysts reported in open literature.

<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm⁻²)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>O₂</td>
<td>Pt/C (0.375 mg cm⁻²)</td>
<td>Ag/C (0.5 mg cm⁻²)</td>
<td>AEM</td>
<td>60</td>
<td>109</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.5 mg cm⁻²)</td>
<td>Pt/C (20 wt%) (0.5 mg cm⁻²)</td>
<td>AAEM-MEAs</td>
<td>50</td>
<td>~54</td>
<td>87</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.5 mg cm⁻²)</td>
<td>Ag/C (60 wt%) (4 mg cm⁻²)</td>
<td>AAEM-MEAs</td>
<td>50</td>
<td>~47</td>
<td>87</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.5 mg cm⁻²)</td>
<td>Au/C (60 wt%) (4 mg cm⁻²)</td>
<td>AAEM-MEAs</td>
<td>50</td>
<td>~20</td>
<td>87</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.5 mg cm⁻²)</td>
<td>Pt/C (20 wt%) (0.5 mg cm⁻²)</td>
<td>AAEM-MEAs</td>
<td>50</td>
<td>~28</td>
<td>87</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 82%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (40 wt%) (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>the mixture of TMA and TMHDA with a ratio of 3:1</td>
<td>60</td>
<td>28.2</td>
<td>88</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / Air (RH = 100%)</td>
<td>Pt/C (40 wt%) (0.5 mg cm⁻²)</td>
<td>Ag/C (0.5 mg cm⁻²)</td>
<td>the mixture of TMA and TMHDA with a ratio of 3:1</td>
<td>60</td>
<td>8.1</td>
<td>88</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / Air (RH = 100%)</td>
<td>Pt/C (40 wt%) (0.5 mg cm⁻²)</td>
<td>Ag/C (1.0 mg cm⁻²)</td>
<td>the mixture of TMA and TMHDA with a ratio of 3:1</td>
<td>60</td>
<td>19.9</td>
<td>88</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / Air (RH = 100%)</td>
<td>Pt/C (40 wt%) (0.5 mg cm⁻²)</td>
<td>Ag/C (2.0 mg cm⁻²)</td>
<td>the mixture of TMA and TMHDA with a ratio of 3:1</td>
<td>60</td>
<td>30.1</td>
<td>88</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AHA Membrane (without ionomer in both anode and cathode)</td>
<td>R.T.</td>
<td>~6</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>ACS Membrane (without ionomer in both anode and cathode)</td>
<td>R.T.</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AHA Membrane (with ionomer in both anode and cathode)</td>
<td>R.T.</td>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AHA Membrane (with ionomer in both anode and cathode)</td>
<td>R.T.</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AHA Membrane (with ionomer in cathode and without at anode)</td>
<td>R.T.</td>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AHA Membrane (with ionomer in cathode and without at anode)</td>
<td>R.T.</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AHA Membrane (without ionomer in cathode and without at anode)</td>
<td>R.T.</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pd/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>56</td>
<td>91</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pd/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>26</td>
<td>91</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PdCo(1:1)/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>75</td>
<td>91</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PdCo(2:1)/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PdCo(3:1)/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>19</td>
<td>91</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pd/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>15</td>
<td>91</td>
</tr>
<tr>
<td>500 sccm H₂ (RH = 100%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PdCo(1:1)/C (0.5 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane</td>
<td>30</td>
<td>26</td>
<td>91</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tanaka Pt/C (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>45</td>
<td>~130</td>
<td>94</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>E-Tek Pt/C (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>45</td>
<td>~120</td>
<td>94</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>CoPc/MWCNT (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>45</td>
<td>~100</td>
<td>94</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>FePc/MWCNT (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>45</td>
<td>~60</td>
<td>94</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>MWCNT (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>45</td>
<td>~25</td>
<td>94</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>anion exchange membrane</td>
<td>50</td>
<td>196</td>
<td>95</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 400 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>FePc/MWCNT (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>50</td>
<td>177</td>
<td>95</td>
</tr>
<tr>
<td>250 sccm H₂ (RH = 57%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1.5 mg cm⁻²)</td>
<td>Pt/C (1.5 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>60</td>
<td>387</td>
<td>97</td>
</tr>
<tr>
<td>250 sccm H₂ (RH = 57%) / 500 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1.5 mg cm⁻²)</td>
<td>CoO/GO(N) (0.6 mg cm⁻²)</td>
<td>Tokuyama A201 membrane</td>
<td>60</td>
<td>248</td>
<td>97</td>
</tr>
<tr>
<td>300 sccm H₂ / 300 sccm O₂</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>ED-CNT (0.2 mg cm⁻²)</td>
<td>commercial FAA anion exchange membrane</td>
<td>80</td>
<td>25.5</td>
<td>107</td>
</tr>
<tr>
<td>300 sccm H₂ / 300 sccm O₂</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.2 mg cm⁻²)</td>
<td>commercial FAA anion exchange membrane</td>
<td>80</td>
<td>19.1</td>
<td>107</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm⁻²)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂/O₂</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>X-23 AAEM</td>
<td>60</td>
<td>823</td>
<td>3</td>
</tr>
<tr>
<td>H₂/O₂</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>X-19 AAEM</td>
<td>50</td>
<td>718</td>
<td>3</td>
</tr>
<tr>
<td>H₂/O₂</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>X-19 AAEM</td>
<td>40</td>
<td>640</td>
<td>3</td>
</tr>
<tr>
<td>H₂/O₂</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>X-5 AAEM</td>
<td>20</td>
<td>648</td>
<td>3</td>
</tr>
<tr>
<td>H₂/Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>X-23 AAEM</td>
<td>50</td>
<td>464</td>
<td>3</td>
</tr>
<tr>
<td>H₂/O₂</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>radiation-grafted AAEMs-S80</td>
<td>40</td>
<td>450</td>
<td>3</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>radiation-grafted AAEMs-S50</td>
<td>50</td>
<td>~100</td>
<td>9</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>radiation-grafted AAEMs-S20</td>
<td>50</td>
<td>~230</td>
<td>9</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>radiation-grafted AAEMs-S80</td>
<td>50</td>
<td>36.6</td>
<td>9</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Au/C (0.5 mg cm⁻²)</td>
<td>Ag/C (0.5 mg cm⁻²)</td>
<td>radiation-grafted AAEMs-S80</td>
<td>50</td>
<td>19.1</td>
<td>9</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PTFE-QDPSU composite membrane</td>
<td>30</td>
<td>~60</td>
<td>61</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PTFE-QDPSU composite membrane</td>
<td>40</td>
<td>~100</td>
<td>61</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PTFE-QDPSU composite membrane</td>
<td>40</td>
<td>146</td>
<td>61</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PTFE-QDPSU composite membrane</td>
<td>40</td>
<td>103</td>
<td>61</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA₅₁₅₁ membrane</td>
<td>25</td>
<td>72</td>
<td>114</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA AAEM (H/Mw)</td>
<td>25</td>
<td>35.1</td>
<td>115</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA AAEM (M/Mw)</td>
<td>25</td>
<td>28.5</td>
<td>115</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA AAEM (L/Mw)</td>
<td>25</td>
<td>23.4</td>
<td>115</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA AAEM (ULMw)</td>
<td>25</td>
<td>18.2</td>
<td>115</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA-Oh⁻ membrane</td>
<td>70</td>
<td>20.1</td>
<td>117</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA-Oh⁻ membrane</td>
<td>25</td>
<td>32.7</td>
<td>120</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA-Oh⁻ membrane</td>
<td>25</td>
<td>37.7</td>
<td>121</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA-Oh⁻ alkaline membranes (PVA/PDDA = 1:0.75)</td>
<td>R.T.</td>
<td>14.8</td>
<td>121</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA-Oh⁻ alkaline membranes (PVA/PDDA = 1:0.5)</td>
<td>R.T.</td>
<td>35.1</td>
<td>121</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PDDA-Oh⁻ alkaline membranes (PVA/PDDA = 1:0.25)</td>
<td>R.T.</td>
<td>11.5</td>
<td>121</td>
</tr>
<tr>
<td>2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PVA/PCB/Oh⁻ membrane</td>
<td>40</td>
<td>124.7</td>
<td>122</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>PPO-based anion exchange membrane</td>
<td>25</td>
<td>~3</td>
<td>124</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>PPO-based anion exchange membrane</td>
<td>30</td>
<td>~3</td>
<td>124</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>PPO-based anion exchange membrane</td>
<td>40</td>
<td>~8</td>
<td>124</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>PPO-based anion exchange membrane</td>
<td>60</td>
<td>~11.5</td>
<td>124</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>PPO-based anion exchange membrane</td>
<td>70</td>
<td>19.5</td>
<td>124</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>Pt/C (0.65 mg cm⁻²)</td>
<td>PPO-based anion exchange membrane</td>
<td>80</td>
<td>~15</td>
<td>124</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Blm-PPO-0.54 AAEM</td>
<td>35</td>
<td>13</td>
<td>126</td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane (Blm-PPO-0.54)</td>
<td>35</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane (Blm-PPO-0.43)</td>
<td>35</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>5 scrcm H₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>alkaline polymer electrolyte membrane (Im-PPO)</td>
<td>50</td>
<td>127</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm⁻²)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%) / 200 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>TMA-20 electrolyte membrane</td>
<td>50</td>
<td>188.7</td>
<td>128</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>TPPVBN30</td>
<td>50</td>
<td>62.3</td>
<td>128</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>TPPVBN30</td>
<td>60</td>
<td>268</td>
<td>132</td>
</tr>
<tr>
<td>800 sccm H₂ (RH = 100%) / 100 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>QAPS/PTFE 29 um CCM</td>
<td>50</td>
<td>348</td>
<td>132</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>QAPS/PTFE 29 um CCM</td>
<td>50</td>
<td>152</td>
<td>133</td>
</tr>
<tr>
<td>120 sccm H₂ (RH = 100%) / 120 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>QAPS/PTFE membrane</td>
<td>40 (0 MPa)</td>
<td>~180</td>
<td>134</td>
</tr>
<tr>
<td>120 sccm H₂ (RH = 100%) / 120 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>xQAPS8PTFE membrane</td>
<td>50 (0 MPa)</td>
<td>~400</td>
<td>134</td>
</tr>
<tr>
<td>120 sccm H₂ (RH = 100%) / 120 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>10% ZrO₂ composite membrane</td>
<td>60 (0 MPa)</td>
<td>~450</td>
<td>134</td>
</tr>
<tr>
<td>120 sccm H₂ (RH = 100%) / 120 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>xQAPS8PTFE membrane</td>
<td>60 (0.1 MPa)</td>
<td>550</td>
<td>134</td>
</tr>
<tr>
<td>800 sccm H₂ (RH = 100%) / 600 sccm O₂ (RH = 100%)</td>
<td>Pt/C (2 mg cm⁻²)</td>
<td>Pt/C (2 mg cm⁻²)</td>
<td>PSU-PATC[1.2]</td>
<td>60</td>
<td>55</td>
<td>138</td>
</tr>
<tr>
<td>150 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>QA-PSf membrane</td>
<td>60</td>
<td>115</td>
<td>139</td>
</tr>
<tr>
<td>150 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>QA-PSf-PEG350 membrane</td>
<td>60</td>
<td>~138</td>
<td>139</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>QA-PSf-PFG750 membrane</td>
<td>60</td>
<td>180</td>
<td>139</td>
</tr>
<tr>
<td>Hz (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.375 mg cm⁻²)</td>
<td>Pt/C (0.125 mg cm⁻²)</td>
<td>QPSU membrane</td>
<td>R.T.</td>
<td>~70</td>
<td>140</td>
</tr>
<tr>
<td>Hz (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.375 mg cm⁻²)</td>
<td>Pt/C (0.125 mg cm⁻²)</td>
<td>QPSU / 2.5% ZrO₂ composite membrane</td>
<td>R.T.</td>
<td>~75</td>
<td>140</td>
</tr>
<tr>
<td>Hz (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.375 mg cm⁻²)</td>
<td>Pt/C (0.125 mg cm⁻²)</td>
<td>QPSU / 5% ZrO₂ composite membrane</td>
<td>R.T.</td>
<td>~80</td>
<td>140</td>
</tr>
<tr>
<td>Hz (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.375 mg cm⁻²)</td>
<td>Pt/C (0.125 mg cm⁻²)</td>
<td>QPSU / 7.5% ZrO₂ composite membrane</td>
<td>R.T.</td>
<td>~110</td>
<td>140</td>
</tr>
<tr>
<td>Hz (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.375 mg cm⁻²)</td>
<td>Pt/C (0.125 mg cm⁻²)</td>
<td>QPSU / 10% ZrO₂ composite membrane</td>
<td>R.T.</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AAEM-MeAs with alkaline interface polymer</td>
<td>50</td>
<td>55</td>
<td>141</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>AAEM-MeAs without alkaline interface polymer</td>
<td>50</td>
<td>16</td>
<td>141</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>A901.0.97</td>
<td>50</td>
<td>343</td>
<td>143</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>SEBS:0.51</td>
<td>50</td>
<td>169</td>
<td>143</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>SEBS:0.70</td>
<td>50</td>
<td>222</td>
<td>143</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>Pt/C (1 mg cm⁻²)</td>
<td>SEBS:0.90</td>
<td>50</td>
<td>285</td>
<td>143</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Tokuyama A201 (C16D40)</td>
<td>50</td>
<td>77</td>
<td>144</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Tokuyama A201 (CS6D60)</td>
<td>50</td>
<td>67</td>
<td>144</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Tokuyama A201 (CS6D60)</td>
<td>50</td>
<td>~80</td>
<td>144</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Tokuyama A201 (CS6D60)</td>
<td>50</td>
<td>~105</td>
<td>144</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Tokuyama A201 (CS6D60)</td>
<td>50</td>
<td>~120</td>
<td>144</td>
</tr>
<tr>
<td>2000 sccm H₂ (RH = 100%) / 2000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Tokuyama A201 (CS6D60)</td>
<td>50</td>
<td>145</td>
<td>144</td>
</tr>
</tbody>
</table>

(continued)
Table 3 (Continued)

<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm-2)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 sccm H\textsubscript{2} (RH = 95%) / 250 sccm air (RH = 95%)</td>
<td>Pt/C (0.5 mg cm-2)</td>
<td>Pt/C (1 mg cm-2)</td>
<td>Sn\textsubscript{0.92}Sb\textsubscript{0.08}P\textsubscript{2}O\textsubscript{7}-PTFE composite membrane</td>
<td>70</td>
<td>15</td>
<td>156</td>
</tr>
<tr>
<td>250 sccm H\textsubscript{2} (RH = 95%) / 250 sccm air (RH = 95%)</td>
<td>Pt/C (1 mg cm-2)</td>
<td>Pt/C (1 mg cm-2)</td>
<td>Sn\textsubscript{0.92}Sb\textsubscript{0.08}P\textsubscript{2}O\textsubscript{7}-PTFE composite membrane</td>
<td>70</td>
<td>~75</td>
<td>156</td>
</tr>
<tr>
<td>250 sccm H\textsubscript{2} (RH = 95%) / 250 sccm air (RH = 95%)</td>
<td>Pt/C (1 mg cm-2)</td>
<td>Pt/C (1 mg cm-2)</td>
<td>Sn\textsubscript{0.92}Sb\textsubscript{0.08}P\textsubscript{2}O\textsubscript{7}-PTFE composite membrane</td>
<td>70</td>
<td>~50</td>
<td>156</td>
</tr>
<tr>
<td>100 sccm H\textsubscript{2} (RH = 95%) / 100 sccm O\textsubscript{2} (RH = 100%)</td>
<td>Pt/C (0.4 mg cm-2)</td>
<td>Pt/C (0.4 mg cm-2)</td>
<td>Sn\textsubscript{0.92}Sb\textsubscript{0.08}P\textsubscript{2}O\textsubscript{7}-PTFE composite membrane</td>
<td>45</td>
<td>7</td>
<td>156</td>
</tr>
<tr>
<td>100 sccm H\textsubscript{2} (RH = 95%) / 100 sccm O\textsubscript{2} (RH = 100%)</td>
<td>Pt/C (0.4 mg cm-2)</td>
<td>Pt/C (0.4 mg cm-2)</td>
<td>Sn\textsubscript{0.92}Sb\textsubscript{0.08}P\textsubscript{2}O\textsubscript{7}-PTFE composite membrane</td>
<td>45</td>
<td>25.5</td>
<td>156</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm⁻²)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (unmodified) (2 mg cm⁻²)</td>
<td>Pt/C (unmodified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>150</td>
<td>~35</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (unmodified) (2 mg cm⁻²)</td>
<td>Pt/C (unmodified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>175</td>
<td>~50</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>75</td>
<td>76</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>100</td>
<td>94</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>125</td>
<td>114</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>150</td>
<td>130</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>175</td>
<td>132</td>
<td>160</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 50 sccm air (RH = 100%)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Pt/C (modified) (2 mg cm⁻²)</td>
<td>Sn₀.₉₂Sn₀.₀₈P₂O₇-PTFE composite membrane</td>
<td>200</td>
<td>147</td>
<td>160</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>ACDH96 membrane (electrode1)</td>
<td>50</td>
<td>252</td>
<td>161</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>ACDH98 membrane</td>
<td>50</td>
<td>278</td>
<td>161</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>CD96 membrane</td>
<td>50</td>
<td>237</td>
<td>161</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>ACDH96 membrane (electrode2)</td>
<td>50</td>
<td>370</td>
<td>161</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (3.4 mg cm⁻²)</td>
<td>Pt/C (6.5 mg cm⁻²)</td>
<td>ATM-PP (ionomer: M-Nafion-FA-TMG)</td>
<td>80</td>
<td>577</td>
<td>162</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (3.4 mg cm⁻²)</td>
<td>Pt/C (6.5 mg cm⁻²)</td>
<td>ATM-PP (ionomer: M-Nafion-FA-TMG)</td>
<td>80</td>
<td>466</td>
<td>162</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (3.4 mg cm⁻²)</td>
<td>Pt/C (6.5 mg cm⁻²)</td>
<td>UCCT (1 M TMAOH)</td>
<td>80</td>
<td>335</td>
<td>162</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 95%) / 200 sccm O₂ (RH = 95%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PSF-TMA AEM (IEC = 1.79 mmol g⁻¹)</td>
<td>70</td>
<td>~8</td>
<td>165</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 95%) / 200 sccm O₂ (RH = 95%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PSF-TMA AEM (IEC = 2.05 mmol g⁻¹)</td>
<td>70</td>
<td>179</td>
<td>165</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 95%) / 200 sccm O₂ (RH = 95%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PSF-DMP AEM (IEC = 1.81 mmol g⁻¹)</td>
<td>70</td>
<td>~53</td>
<td>165</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 95%) / 200 sccm O₂ (RH = 95%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PSF-TMA AEM (IEC = 1.79 mmol g⁻¹)</td>
<td>70</td>
<td>~2</td>
<td>165</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 95%) / 200 sccm O₂ (RH = 95%)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>Pt/C (0.5 mg cm⁻²)</td>
<td>PSF-TMA AEM (IEC = 2.05 mmol g⁻¹)</td>
<td>70</td>
<td>~40</td>
<td>165</td>
</tr>
<tr>
<td>50 sccm H₂ (RH = 100%) / 100 sccm O₂ (RH = 100%)</td>
<td>Pt/C (2 mg cm⁻²)</td>
<td>Pt/C (2 mg cm⁻²)</td>
<td>AEM based on [VBM][Cl]</td>
<td>30</td>
<td>33</td>
<td>170</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>20</td>
<td>~10</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>40</td>
<td>~17</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>60</td>
<td>~22</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>80</td>
<td>~28</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>100</td>
<td>~13.6</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>120</td>
<td>~12.5</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>20</td>
<td>2.4</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>20</td>
<td>7.0</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>20</td>
<td>13.5</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>40</td>
<td>16.3</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>60</td>
<td>18.6</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>80</td>
<td>20.2</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H₂ / Air</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>solid alkaline electrolyte membrane</td>
<td>20</td>
<td>4.1</td>
<td>172</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm(^{-2}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane</td>
<td>20</td>
<td>2.1</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-Ac pH = 7.6)</td>
<td>20</td>
<td>1.1</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-SO(_4), pH = 4.6)</td>
<td>40</td>
<td>4.8</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMACO(_3), pH = 8)</td>
<td>60</td>
<td>6.5</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMACO(_3), pH = 8)</td>
<td>80</td>
<td>9.7</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-Ac pH = 7.6)</td>
<td>20</td>
<td>2.2</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-Ac pH = 7.6)</td>
<td>60</td>
<td>2.6</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-Ac pH = 7.6)</td>
<td>80</td>
<td>3.0</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-SO(_4), pH = 4.6)</td>
<td>40</td>
<td>1.2</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-SO(_4), pH = 4.6)</td>
<td>60</td>
<td>1.4</td>
<td>172</td>
</tr>
<tr>
<td>20 sccm H(_2)/Air</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>solid alkaline electrolyte membrane (1 M TMA-SO(_4), pH = 4.6)</td>
<td>80</td>
<td>1.6</td>
<td>172</td>
</tr>
</tbody>
</table>

2000 sccm H\(_2\) (RH = 100%) / 2000 sccm O\(_2\) (RH = 100%) | Pt/C (0.5 mg cm\(^{-2}\)) | Pt/C (0.5 mg cm\(^{-2}\)) | solid alkaline electrolyte membrane (1 M TMA-SO\(_4\), pH = 4.6) | 60 | 110 | 185 |

2000 sccm H\(_2\) (RH = 100%) / 2000 sccm O\(_2\) (RH = 100%) | Pt/C (0.5 mg cm\(^{-2}\)) | Pt/C (0.5 mg cm\(^{-2}\)) | solid alkaline electrolyte membrane (1 M TMA-SO\(_4\), pH = 4.6) | 50 | 90 | 185 |

6000 sccm H\(_2\) (RH = 100%) / 6000 sccm O\(_2\) (RH = 100%) | Pt/C (0.4 mg cm\(^{-2}\)) | Pt/C (0.4 mg cm\(^{-2}\)) | solid alkaline electrolyte membrane (1 M TMA-SO\(_4\), pH = 4.6) | 50 | 80 | 188 |

6000 sccm H\(_2\) (RH = 100%) / 6000 sccm O\(_2\) (RH = 100%) | Pt/C (0.4 mg cm\(^{-2}\)) | Pt/C (0.4 mg cm\(^{-2}\)) | solid alkaline electrolyte membrane (1 M TMA-SO\(_4\), pH = 4.6) | 50 | 1.1 | 188 |

5% crosslinked QPMV-PDVB AAEM 50 | 140 | 188 |

2) ATM-PP 1 AEM 60 200 208 |

2) F-PAE AAEM 60 198 208 |

2) 5% crosslinked QPMV-PDVB AAEM 50 | 140 | 188 |

2) ETFE-based AAEM 60 | 910 | 190 |

2) E-6 AAEM 60 | 1160 | 190 |

2) E-R AAEM 60 | 910 | 190 |

2) LDPE-AAEM 80 | 1450 | 191 |

2) LDPE-AAEM 60 | 960 | 191 |

2) LDPE-AAEM 60 | 910 | 191 |

2) LDPE-AAEM 80 | 980 | 191 |

2) LDPE-AAEM 80 | 630 | 191 |

2) ETFE-g-VICTMA AAEM 60 | 1400 | 205 |

10% crosslinked QPMV-PDVB AAEM 50 | 46 | 207 |

5% crosslinked QPMV-PDVB AAEM 50 | 45 | 207 |

5% crosslinked QPMV-PDVB AAEM 50 | 55 | 207 |

F-PAE AEM 60 | 193 | 208 |

ATM-PP 1 AEM 60 | 205 | 208 |

ATM-PP 2 AEM 60 | 80 | 208 |

ATM-PP 3 AEM 60 | ~20 | 208 |

qQAPS-S\(_2\) membrane 60 | 1000 | 210 |

qQAPS-S\(_2\) membrane 60 | 870 | 210 |
Table 4
Selected hydrogen/oxygen fuel cell performance with different MEA structures reported in open literature.

<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm⁻²)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Anion exchange polymer membrane (ionomer: TMA)</td>
<td>50</td>
<td>478</td>
<td>171</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Anion exchange polymer membrane (ionomer: TMHDA)</td>
<td>50</td>
<td>336</td>
<td>171</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Anion exchange polymer membrane (ionomer: DABCD)</td>
<td>50</td>
<td>116</td>
<td>171</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Anion exchange polymer membrane (ionomer: TEA)</td>
<td>50</td>
<td>100</td>
<td>171</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Anion exchange polymer membrane (ionomer: DMS)</td>
<td>50</td>
<td>100</td>
<td>171</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Tokuyama A901 (ionomer: QSEBS-L)</td>
<td>50</td>
<td>~70</td>
<td>192</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Tokuyama A901 (ionomer: QSEBS-M)</td>
<td>50</td>
<td>210</td>
<td>192</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Tokuyama A901 (ionomer: QSEBS-H)</td>
<td>50</td>
<td>~200</td>
<td>192</td>
</tr>
<tr>
<td>200 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Pt/C (1.28 mg cm⁻²)</td>
<td>Tokuyama A901 (ionomer: QBSF)</td>
<td>50</td>
<td>30</td>
<td>192</td>
</tr>
<tr>
<td>H₂ (RH = 95%) / 1000 sccm H₂ (RH = 95%)</td>
<td>Pt/C (0.45 mg cm⁻²)</td>
<td>Pt/C (0.45 mg cm⁻²)</td>
<td>Tokuyama A2012 AEM (ionomer: PyPBI)</td>
<td>50</td>
<td>174</td>
<td>193</td>
</tr>
<tr>
<td>H₂ (RH = 95%) / 2000 sccm H₂ (RH = 95%)</td>
<td>Pt/C (0.45 mg cm⁻²)</td>
<td>Pt/C (0.45 mg cm⁻²)</td>
<td>Tokuyama A2012 AEM (ionomer: AS-4)</td>
<td>50</td>
<td>~85</td>
<td>194</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tokuyama A201 (ionomer content: 10% (solvent: IPA))</td>
<td>50</td>
<td>~330</td>
<td>194</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tokuyama A201 (ionomer content: 15% (solvent: IPA))</td>
<td>50</td>
<td>358</td>
<td>194</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tokuyama A201 (ionomer content: 20% (solvent: IPA))</td>
<td>50</td>
<td>321</td>
<td>194</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tokuyama A201 (ionomer content: 20% (solvent: IPG))</td>
<td>50</td>
<td>220</td>
<td>194</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tokuyama A201 (ionomer content: 20% (solvent: PA))</td>
<td>50</td>
<td>407</td>
<td>194</td>
</tr>
<tr>
<td>100 sccm H₂ (RH = 100%) / 200 sccm O₂ (RH = 100%)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Pt/C (0.4 mg cm⁻²)</td>
<td>Tokuyama A201 (ionomer content: 20% (solvent: NBEA))</td>
<td>50</td>
<td>30</td>
<td>196</td>
</tr>
<tr>
<td>H₂ (RH = 75%) / 1000 sccm O₂ (RH = 75%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>porous silver membrane (Laminated)</td>
<td>50</td>
<td>~5</td>
<td>196</td>
</tr>
<tr>
<td>H₂ (RH = 75%) / 1000 sccm O₂ (RH = 75%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>porous silver membrane (Not Laminated)</td>
<td>50</td>
<td>~7.5</td>
<td>196</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>porous silver membrane</td>
<td>50</td>
<td>60</td>
<td>196</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>porous silver membrane (A54 ionomer in catalyst layer + A54 interface layer)</td>
<td>50</td>
<td>60</td>
<td>196</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>porous silver membrane (A54 ionomer in catalyst layer + A54 interface layer)</td>
<td>50</td>
<td>60</td>
<td>196</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (thin-film method)</td>
<td>70</td>
<td>125</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation)</td>
<td>70</td>
<td>125</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation with 9% PTFE)</td>
<td>70</td>
<td>131</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation with 9% PTFE)</td>
<td>70</td>
<td>144</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation)</td>
<td>70</td>
<td>152</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation)</td>
<td>70</td>
<td>174</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation)</td>
<td>70</td>
<td>192</td>
<td>199</td>
</tr>
<tr>
<td>H₂ (RH = 100%) / 1000 sccm O₂ (RH = 100%)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Pt/C (50 ug cm⁻²)</td>
<td>Nafion membrane and AEM (ionomer impregnation)</td>
<td>70</td>
<td>192</td>
<td>199</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm(^{-2}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2) (RH = 100%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>QAPAE-4</td>
<td>25</td>
<td>~230</td>
<td>200</td>
</tr>
<tr>
<td>O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(_2) (RH = 100%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>QAPSF</td>
<td>60</td>
<td>215</td>
<td>200</td>
</tr>
<tr>
<td>O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(_2) (RH = 100%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>QAPME-4</td>
<td>60</td>
<td>315</td>
<td>200</td>
</tr>
<tr>
<td>O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.5 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.5 mg cm(^{-2}))</td>
<td>MEA-A (Solvay AAEM)</td>
<td>50</td>
<td>55</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.53 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.53 mg cm(^{-2}))</td>
<td>MEA-B (Solvay AAEM)</td>
<td>50</td>
<td>25</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>MEA-C (Solvay AAEM)</td>
<td>50</td>
<td>34</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>MEA-E (Solvay AAEM)</td>
<td>50</td>
<td>35</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>MEA-F (Solvay AAEM)</td>
<td>50</td>
<td>80</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>MEA-G (Solvay AAEM)</td>
<td>50</td>
<td>75</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>MEA-H (Solvay AAEM)</td>
<td>50</td>
<td>61</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>MEA-I (Solvay AAEM)</td>
<td>50</td>
<td>22</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>MEA-J (Surrey AAEM)</td>
<td>50</td>
<td>104</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>MEA-K (Solvay AAEM)</td>
<td>50</td>
<td>35</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.55 mg cm(^{-2}))</td>
<td>MEA-L (Solvay AAEM)</td>
<td>50</td>
<td>61</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 sccm H(_2) (RH = 100%)</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>Pt/C (20 wt%) (0.57 mg cm(^{-2}))</td>
<td>MEA-M (Solvay AAEM)</td>
<td>50</td>
<td>22</td>
<td>202</td>
</tr>
<tr>
<td>2000 sccm O(_2) (RH = 100%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
anode electrocatalyst and cathode electrocatalyst, respectively, as well as an AAEM (Tokuyama A201). Yang et al. [194] fabricated high-performance electrodes with fine microstructure by changing the content of the ionomer and selecting the appropriate dispersion solvent. A maximum power density of 358 mW cm\(^{-2}\) was achieved when the ionomer content was 20 wt\% (CCM-I20) with humidified \(\text{H}_2\) in the anode at a rate of 100 sccm and humidified \(\text{O}_2\) in the cathode at a rate of 200 sccm at 50\(^\circ\)C, which is three and five times of CCM-125 and CCM 110, respectively. Importantly, the peak power density increased remarkably to 407 mW cm\(^{-2}\) when the dispersion solution changed to NBA. Recently, Wang et al. [210] found that the highest power density of 1000 mW cm\(^{-2}\) was obtained when Pt–Ru (0.4 mg cm\(^{-2}\)) is utilized as anode electrocatalyst, Pt (0.4 mg cm\(^{-2}\)) is used as cathode electrocatalyst, and \(\text{H}_2\) and \(\text{O}_2\) were fed at flow rates at 400 sccm at 60\(^\circ\)C, which was 400 mW cm\(^{-2}\) higher than the performance of a fuel cell running under the same conditions apart from the unitary anode electrocatalyst Pt as shown in Fig. 9(c). It has been revealed that the enhancement in the kinetics of the HOR was attributed to weakening the Pt–H\(_{\text{ad}}\) interaction rather than the ever reported oxophilic effect. Breakthroughs in power output has been reported very recently [190,191,205], as shown in Fig. 9(d) (e) and (f). A peak power density of 1.4 Wcm\(^{-2}\) was achieved with hydrogen and oxygen both at a flow rate of 1000 sccm at 60\(^\circ\)C, when PtRu (0.67 mg cm\(^{-2}\)) and Pt (0.53 mg cm\(^{-2}\)) were employed as anode electrocatalyst and cathode electrocatalyst, respectively [205]. More importantly, the dew points for the electrode configuration was optimized to 54/57\(^\circ\)C, which was the same thing as RHs equal to 75%/85%. The spectacular performance was primarily attributed to the optimal balance between necessary membrane hydration and electrode flooding/dry-out. To date, 1.4 W cm\(^{-2}\) was the highest peak power density at 60\(^\circ\)C. As Wang et al. [191] developed a LDPE-AAEM that possessed the ability to be routinely evaluated in fuel cells at 80\(^\circ\)C, the \(\text{H}_2/\text{O}_2\) AAEMFC fabricated with this AAEM, a PtRu/C anode (0.4 mg cm\(^{-2}\)) and a Pt/C cathode (0.4 mg cm\(^{-2}\)) exhibited a peak power density as high as 1.45 W cm\(^{-2}\). It was claimed that avoiding anode flooding and enhancing supply of H\(_2\)O to the cathode reaction sites contributed to the splendid power output. Since the reactant diffusion limitations in anode and cathode at high current densities were more serious at 80\(^\circ\)C than 60\(^\circ\)C, the effects of the water management on the performance were more significant.

Table 4 (Continued)

<table>
<thead>
<tr>
<th>Fuel/Oxidant</th>
<th>Anode</th>
<th>Cathode</th>
<th>Membrane</th>
<th>T (°C)</th>
<th>Power density (mW cm(^{-2}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 sccm (\text{O}_2) (RH = 0%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>HMEA-II (a high-pH cathode with a Nation core membrane)</td>
<td>50</td>
<td>63</td>
<td>214</td>
</tr>
<tr>
<td>1000 sccm (\text{H}_2) (RH = 95%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>HMEA-II (a high-pH cathode with a Nation core membrane)</td>
<td>50</td>
<td>52</td>
<td>214</td>
</tr>
<tr>
<td>1000 sccm (\text{O}_2) (RH = 95%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>A901</td>
<td>50</td>
<td>~330</td>
<td>216</td>
</tr>
<tr>
<td>1000 sccm (\text{H}_2) (RH = 100%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>A201</td>
<td>50</td>
<td>~260</td>
<td>216</td>
</tr>
<tr>
<td>1000 sccm (\text{O}_2) (RH = 100%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>A901 (Pt/C:AS-4 = 6:4)</td>
<td>50</td>
<td>~20</td>
<td>216</td>
</tr>
<tr>
<td>1000 sccm (\text{H}_2) (RH = 95%)</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>A201 (Pt/C:AS-4 = 7:3)</td>
<td>50</td>
<td>~275</td>
<td>216</td>
</tr>
<tr>
<td>1000 sccm (\text{O}_2) (RH = 95%)</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>Pt/C (0.4 mg cm(^{-2}))</td>
<td>A201 (Pt/C:AS-4 = 8:2)</td>
<td>50</td>
<td>~140</td>
<td>216</td>
</tr>
<tr>
<td>1000 sccm (\text{H}_2) (RH = 95%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>A201 (Pt/C:AS-X = 7:3)</td>
<td>50</td>
<td>~260</td>
<td>216</td>
</tr>
<tr>
<td>1000 sccm (\text{O}_2) (RH = 95%)</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>Pt/C (0.5 mg cm(^{-2}))</td>
<td>A901 (Pt/C:AS-X = 7:3)</td>
<td>50</td>
<td>340</td>
<td>216</td>
</tr>
</tbody>
</table>

7. Innovative system designs

7.1. Hybrid fuel cells

Recently, some innovative structures have been proposed with the purpose of improving the fuel cell performance [211–216]. Ünlü et al. [211] developed a novel hybrid polymer electrolyte fuel cell, as shown in Fig. 10(a), in which the hybrid membrane was composed of a proton exchange membrane sandwiched by two AAEMs, denoted as AAEM/PEM/AAEM fuel cell, simplifying water management and avoiding CO poisoning. The hybrid fuel cell fabricated with Pt (0.5 mg cm\(^{-2}\)) both at anode and cathode exhibited a peak power density of 55.6 mW cm\(^{-2}\) with \(\text{H}_2\) (RH = 100%) and \(\text{O}_2\) (RH = 100%) supplied at a rate of 360 and 480 sccm, respectively. The peak power density increased to 78.3 mW cm\(^{-2}\) at 0% RH under the same conditions. They claimed that the unpredictable phenomenon was attributed to the superior water management configuration. However, Shen et al. [212] developed a type of non-flooding hybrid polymer fuel cell, in which a PEM and an AAEM were pressed together. They found that the performance was improved with increasing the temperature and relative humidity, which was opposed to the results reported by Ünlü et al. [211], Zhang et al. [213] developed a hybrid system consisting of an alkaline fuel cell and a heat-driven cycle as shown in Fig. 10(b), which reused the waste heat to improve the maximum equivalent power output. The hybrid system showed superior performance, which was 1.4 times higher than that achieved by a single AAEMFC. Ünlü et al. [214] proposed a novel hybrid anion and proton exchange membrane fuel cell, denoted as AAEM cathode/PEM anode and PEM anode/AAEM cathode, as shown in Fig. 10(c), which exploited the electrochemical advantages of the high-pH operation due to at least one electrode being at high pH. They illustrated that the AAEM cathode/PEM anode junction failed at high current densities resulting from the inadequate flux of water to the AAEM/PEM interface where water dissociated into hydrogen ions (which migrates to the cathode) and hydroxide ions (which migrates to the anode). On the contrary, the PEM anode/AAEM cathode junction was shown to be an available configuration. Despite the modest power density, the type of structure exhibited steady performance with 0% relative humidity at 65\(^\circ\)C for a three-day continuous operation, whereas the conventional fuel cell experienced severe degradation over the same time without humidification. They
also evaluated the effect of RH, ionomer content in the anion-conductive electrode and the inlet gas flow rates on the performance of the hybrid fuel cells, as shown in Fig. 10(d) [215]. The results showed that the ionomer fraction of the high-pH cathode played an important role in the performance, which was limited by the availability of oxygen in the active sites resulting from the flooding in the cathode. When the gases were fed at high flow rates, the water removal from cathode was enhanced and the flooding problem was eliminated. Fukuta et al. [216] tested the optimization of MEA construction employing newly developed membrane and ionomer by Tokuyama, which was one of the leading developers of electrolyte materials for AAEMFCs, to improve the power density. They suggested that the optimized MEA was fabricated with ionomer: AS-X (Pt/C: AS-X = 70:30), membrane: A901, and Pt (0.5 mg cm\(^{-2}\)) both at the anode and cathode, exhibiting a peak power density of 450 mW cm\(^{-2}\) with humidified hydrogen at a flow rate of 1000 sccm and pure oxygen at a flow rate of 2000 sccm. In summary, several novel structure designs that are mainly associated with the MEA construction have been proposed. As a result, the performance is promoted due to the superior water management, the use of preferable pH value, and the low degradation rate of membrane.

7.2. Regenerative fuel cells

Regenerative fuel cell (RFC) is not only an energy conversion device, but an energy storage machine, which typically employs hydrogen as a flexible energy carrier, as shown in Fig. 11. It is the concept that the fabricated electrodes, which exhibit catalytic activities for both ORR and oxygen evolution reaction (OER), can be used as either electrolyzer or a fuel cell. When the AAEM-RFC is working as an electrolyzer, water reacts with electrons to produce hydrogen and hydroxide ions at the cathode according to:

\[
4\text{H}_2\text{O} + 4e^- \rightarrow 4\text{OH}^- + 2\text{H}_2 \tag{16}
\]

The hydroxide ions are transported through the AAEM to the anode catalyst layer where the hydroxide ions are oxidized to release electrons, oxygen and water according to:

\[
4\text{OH}^- \rightarrow 2\text{H}_2\text{O} + 4e^- + \text{O}_2 \tag{17}
\]

Hence, Eq. (16) and Eq. (17) result in the overall reaction:

\[
2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + \text{O}_2 \tag{18}
\]

The produced hydrogen is stored on site after the electrolysis, and can be used as fuel in the fuel cell anode subsequently when the electricity is needed. The reactions of the fuel cell mode have been mentioned earlier take place. Though the RFC is a particular candidate for storing renewable electricity, the high cost still is the primary impediment for the commercialization. The main reason for the high cost is ascribed to the use of platinum group metal catalysts. Ng et al. [217] developed a bifunctional Ni based on carbon black (Ni/C) electrocatalyst for the H\(_2\) electrode because the Ni possessed catalytic activity for the hydrogen evolution reaction (HER) and the HOR. It was shown that the Ni/C electrocatalyst exhibited comparable activity to the Pt/C electrocatalyst at low potentials, while the activity began to decrease at high potential due to the Ni oxidation. Meanwhile, they synthesized a precious-metal free and carbon-free O\(_2\) electrode via electrodeposition of manganese oxide (MnO\(_x\)) on a stainless steel (SS) substrate followed by high-temperature calcination at 480°C [218]. It was revealed that the fabricated electrode possessed comparable oxygen reduction and water oxidation activities and durability to the precious-metal based electrode, which was attributed to avoiding the carbon corrosion. Wu et al. [219] prepared four nanometer size Cu\(_{x}\)Mn\(_{0.9-x}\)Co\(_{2.1}\)O\(_4\) samples (x = 0, 0.3, 0.6, and 0.9) as a non-precious metal based bifunctional oxygen electrode for the use in regenerative fuel cells and studied their characteristics with XRD, SEM, TEM, and cyclic voltammetry. It was indicated that the Cu\(_{x}\)Mn\(_{0.9-x}\)Co\(_{2.1}\)O\(_4\) electrode exhibited promising ORR activity which was similar to Pt/C electrode and a peak power density of 80 mW cm\(^{-2}\) was obtained. Meanwhile, in electrolyzer mode, the prepared electrode showed better OER catalytic activity, with 100 mV more negative onset potentials. Matsushima et al. [220] investigated the three-phase interfacial phenomena in alkaline regenerative fuel cell by a charge-coupled device (CCD) and confocal laser microscopy. It was shown from the results that the hydroxide ions reduced the surface tension, resulting in the spread of the three-phase interface. Consequently, the ORR was promoted as a result of the obvious enlargement of the reaction surface and the short diffusion path of dissolved oxygen. On the other hand, the OER...
was enhanced by the convectional factor of gas evolution. In summary, to develop a cost-effective energy storage technology that is for grid-scale applications, it is crucial to realize the utilization of renewable energy sources such as wind and solar. Undoubtedly, the RFCs using solar and wind are composed the idea of circulation and the concept of sustainable. Although great progress has been made, one issue needs to be addressed. Currently, the precious metals are mainly the electrocatalysts both in anode and cathode, leading to the high cost of the RFCs. As a result, the commercialization is shadowed. Hence, it is urgent to develop non-precious metal electrocatalysts to reduce the cost. However, the non-precious metal electrocatalysts in one electrode are generally not effective enough to catalyze the two reactions. Hence, future direction is to synthesize cost-efficient electrocatalysts with highly catalytic activity.

8. Mathematical modeling

As an economical and useful tool, mathematical modeling can play a significant role in the quantification of the intricate physico-chemical processes in AAEMFCs. Hence, various models have been conducted on predicting the hydroxyl anion conductivity [221], analyzing the concentration profile of carbonate ions [222], and studying the effect of design and operating parameters on the fuel cell performance [223–232]. Jiao et al. [223] developed a three-dimensional multiphase model to investigate the effect of design and operating parameters on the heat and mass transfer characteristics and performance. It was indicated the power output was improved sharply with more anode humidification at the range of 50–80%, whereas the enhancement was less significant at higher humidification levels. Moreover, the cathode humidification played a more important role than that of anode, showing a positive effect on performance, especially at high current densities. When the liquid water volume fraction on the cathode reached 0.02, the liquid water began to move from channels to the CL. With the liquid water volume fraction increasing to 0.08, a balance was formed between the anode and the cathode. The performance was promoted with the decrease of the membrane thickness due to the reduction of the mass transport loss between the anode and the cathode. Deng et al. [226] developed a 3-D multiphase non-isothermal model for the whole hydrogen-fed AAEMFC. It was shown from the results that the insertion of anode MPL, increment of anode back pressure and decrement of membrane thickness generally improved the cell performance. In addition, the water behavior was also studied and it was found that at high current densities, no water was observed in the cathode due to the electro-osmotic drag by ion transport and consumption as the reactant; while, at low current densities, liquid water may exist in cathode arising from improving the anode back diffusion or reducing the membrane thickness. When anode back pressure increased and membrane thickness decreased, the water transport from anode to cathode was changed from diffusion dominated to diffusion/hydraulic permeation dominated. Huo et al. [227] developed a numerical model to investigate the water transport in the anode. Fig. 12(a) depicted the distributions of liquid water in anode catalyst layer and gas diffusion layer. It was indicated that the current density and temperature were two crucial parameters influencing the liquid water transport. Since the current density increased from 0.05 to 1.45 A cm$^{-2}$, the liquid water volume fraction in the anode increased due to more water produced and dragged to the anode. In addition, the liquid water volume fraction in the anode decreased with the temperature due to more water evaporated, suggesting that the anode flooding was suppressed. Shiau et al. [228] developed a two-dimensional nonisothermal multiphase model to investigate the effects of operation condition on the performance. When the gases were fully humidified, the current density was higher than that of partially humidified, which was ascribed to enhanced ORR kinetics and ion/water transport through the membrane. The performance was also improved with increasing temperature due to the same reasons. A theoretical analysis conducted by Deng et al. [229] showed that a higher ionomer content resulted in a better performance under various gas relative humidity due to the improved membrane hydration and enhanced ionic conductivity. As the cathode might suffer from large performance losses resulting.
from the lack of water, properly increasing the water amount in cathode could effectively reduce mass transport and ohmic losses. Moreover, slight anode pressurization and insertion of MPL were preferred. However, Huo et al. [230] argued that the best configuration was only inserting MPL in anode rather than placing MPLs both in anode and cathode as shown in Fig. 12(b). It was explained that the MPL implemented in anode forced the liquid water to back-diffuse to the cathode and MPL eliminated in cathode enhanced the water transport to the cathode CL, both of which led to a high reaction rate and membrane conductivity. Besides, decreasing the cathode CL contact angle improves the performance because more water could be kept in the cathode CL decreasing polarization losses. Nevertheless, attention should be paid into the possibility of cathode flooding problem. Recently, Niu et al. [231] took the two-phase turbulent flow in fuel cell flow channel into consideration, which was largely ignored in previous studies. They developed a direct numerical simulation (DNS) model with modified volume-of-fluid (VOF) approach for tracking the air/water interface. It could be seen from Fig. 12(c) that the water droplet was deformed asymmetrically and became water films spreading on the GDL surface, which was advantageous for reducing the flow resistance. Whereas such water films were difficult to be removed, therefore, the reactant supply was suppressed. Subsequently, the DNS model was used to investigate the behavior of two droplets and three droplets in turbulent and laminar flows [232]. Fig. 12(d) depicted the process. In the two-droplet case, the front droplet firstly became flat and moved towards the other one. Eventually, they were merged in turbulent flow. In the laminar flow, the two droplets were also merged and the finally merged droplet was higher. In the three-droplet case, the two droplets downstream were merged firstly, followed by combining with the front droplet in turbulent flow. It was similar that the three droplets were merged and the finally merged droplet was higher in the laminar flow. Since the liquid films formed on the GDL surface moved slowly, a hydrophobic GDL surface was required for water removal enhancement.

In summary, along with the experiments, modeling and simulation play a critical role in providing detailed insights concerning the complex mass, heat and charged particle transport in an AAEMFC. Modeling is especially important when an experiment is either too expensive to conduct or unable to capture the detailed underlying physics. As the modeling studies are conducted on investigating the mass transport phenomenon in the AAEMFCs, particularly on the water management, the results can be expressed: anode flooding can be a critical issue at 100% RH, whereas at lower RH high ionic transport resistance in the cathode dominates due to dehydrated ionomer phase at high current, where the impact of water-consuming ORR kinetic polarization is also crucial.

9. Remaining challenges and perspectives

Platinum has been widely used as electrocatalyst both in anode and cathode due to its desirable electrochemical activities. However, the high cost becomes the main constraint, which makes the AAEMFC less attractive.

For the anode electrocatalysts, although the HOR is the simplest electrochemical reaction, high activity catalysts are in urgent need due to the less active HOR in basic media than that in acid media. Thus, the Pt alloys and hybrid structures with high activity and low cost have been proposed. However, there are still several problems needed for further investigation, which can be concluded as follows: (1) synthesizing highly active non-PGM electrocatalysts;
(2) improving the durability of the electrocatalysts in hash alkaline media; (3) studying the HOR process on electrocatalysts.

For the cathode electrocatalysts, considerable improvements have been made to synthesize novel ORR electrocatalysts to replace the Pt recently, but there are still remaining some problems unsolved, i.e. the low stability, the high overpotential, and the low reactivity. The proposed alternative non-PGM electrocatalysts are supposed to enhance the direct four-electron pathway and inhibit the formation of hydrogen peroxide, resulting in the promotion of the catalytic activity. Although many non-platinum electrocatalysts showing comparable activity to Pt have been prepared, as mentioned earlier, the durability and stability problems still should be addressed.

As the key component of the MEA, the AAEM is directly related to the fuel cell performance. Hence, it should be pointed out the future research direction for the synthesis of the membrane as well as the ionomer. Tang et al. [233] and Slade et al. [206] have indicated that the dissoluble ionomer is essential because the ionomer can be impregnated into the pores of the porous electrodes, working as a binder that can significantly decrease the interfacial resistance. Zeng et al. [234] found that the fundamental improvement of the fuel cell performance was attributed to the water removal from the surface of catalyst. Hence, a low swelling ionomer film with a highly hydrophilic surface is recommended. In addition, for the application of the AAEMFCs, the AAEM is expected to work normally at a wider range of temperature. Consequently, the AAEMs are required to be thermally stable. On the other hand, the thin films also need to be mechanically stable, being both flexible and strong.

As an economical and useful tool, mathematical modeling can play a significant role in the quantification of the intricate physico-chemical processes in AAEMFCs. However, as composed to the extensive experiment research on the AAEMFCs, mathematical modeling has not received similar attention. Moreover, the limited modeling studies are conducted on investigating the mass transport phenomenon in the AAEMFCs, particularly on the water management. Although water management has been verified to have vital effects on the fuel cell performance, the modeling research on the electrochemical process on the CLs is still deficient. Herein, we suggest that more attention should be focused on the modeling and mathematical analysis.

10. Concluding remarks

As the promising emerging energy technology, the AAEMFC has attracted worldwide attention recently due to the significant reduction of the cost. Consequently, great progress has been made in promoting the power density, enhancing the durability, as well as reducing the cost. Generally, the peak power density is related to temperature, DL porosity, tuned ionomer carbon ratios, electrocatalyst loadings, and carefully controlled RHs. Typically, the performance increases with the increasing temperature due to the enhanced electrode reaction kinetics. Whereas, too high temperature is harmful to those components that are not stable enough, resulting in the performance degradation. Besides, higher DL porosity a lower mass/charge transport resistance, which is advantageous for improving power output. Nevertheless, a DL also functions as an electron transmitter and a CL supporter. Too high porosity is unfavorable for electron transport and mechanical support. Hence, an optimal DL porosity can be determined by taking these three aspects into consideration. The ionomer content has synergistic effects on the electrode microstructure and kinetic properties in terms of the active, ohmic, and mass diffusion polarizations. A deficient ionomer content in the CLs leads to non-continuous network for aiding the hydroxide transport, correspondingly lessening the reactive TPBs, and reducing the electrocatalyst utilization. However, an overloading ionomer content results in high shielding of electrocatalysts and heavy blocking of surface pores, which impedes the H2 and O2 in the process of diffusing to the electrocatalyst particles for carrying out the electrode reactions. Within an appropriate range, increasing electrocatalyst loading is beneficial for promoting peak power density, but too much loading will cause the agglomeration of electrocatalyst and decrease of active sites. Notably, humidifying both hydrogen and oxygen is obligatory. Considering the best performance to date, the RHs are 75% on anode and 85% on cathode. Too high RHs will result in electrode flooding problem, and too low RHs will result in low ORR kinetics and sluggish OH− conductivity.

This review provides an overview of the recent development on the AAEMFC, in terms of the physical and chemical processes, the electrocatalysts toward the HOR and ORR, the system designs and performance, as well as the remaining challenges and perspectives. Although promising, there is still plenty room for substantially increasing the power output before the widespread application. Further development of the AAEMFC may concentrate on, but not be limited to the following: (1) synthesize high activity, high durability, and non-PGM electrocatalysts for both hydrogen oxidation reaction and oxygen reduction reaction; (2) identify the active sites of the electrocatalysts, which is critical for understanding the catalytic mechanism and designing new electrocatalysts; (3) develop the high hydroxide-ion conductivity, low water uptake, and high durability polymer electrolyte membrane; (4) optimize the electrode design for high transport rates of mass, ions and electrons, including the ionomers and structures; (5) optimize the operating conditions for the maximum power output.

Acknowledgments

This work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (HKUST/CRF/11 G) and a grant from the Natural Science Foundation of China (No. 51506039).

References

| Li YS, Zhao TS, Chen R. Cathode flooding behaviour in alkaline direct ethanol fuel cells. J Power Sources 2011;196:1336-44. |

Tagged P

Zhang XH, Tay SW, Liu Z, Hong L. Alkaline anion-exchange polymer membranes with block cop:</p>