
CHAPTER FIVE 
 

TORSION, UNSYMMETRIC BENDING 
AND SHEAR CENTER 
 

5.1 Torsion of noncircular members and thin-walled hollow 
shafts (MECH101, pp.163-169) 

5.2 Unsymmetric bending of beams and the principal centroidal 
axes of the cross section (MECH 101, pp.242-251) 

5.3 Unsymmetric loading of thin-walled members, Shear center 
(MECH 101,pp.320-327) 

 
Review and Summary 
 

5.1 Torsion of noncircular members and thin-walled hollow 
shafts 

 
• Torsion of noncircular members 

                           (a)                                                    (b)                                   (c) 
FIGURE8.12 (a) Torsion of a bar of square cross section, showing distortion of a 
rectangular grid on the lateral surfaces.(b)Cross section remain square.(Thus distortion of the 
lateral surface grid is caused by x-direction warping motion.) (c) State of stress at points A and 
B under torque T. 

            
 



  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

On the corner of the cross section : 
τyx=0     τyz=0    τzx=0    τzy=0 
 
 
τxy=0                  τxz=0 
 
 
 



• Shearing in uniform rectangular cross section 
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       For a/b>=5 , c1=c2=1/3 (1-0.630b/a) 
 
• Distribution of shearing stress---membrane analogy 

 
*  A homogeneous elastic membrane attached to a fixed frame 
and subjected to a uniform pressure on one side--- analog of the 
bar in torsion: The shearing stress τ will have the same direction 
as the horizontal tangent to the membrane at Q’, and its 
magnitude will be proportional to the maximum slope. The 
applied torque will be proportional to the volume between the 
membrane and the plane of the frame. 

Table 3.1 Coefficient for 
Rectangular Bars in Torsion 

A/b C1 C2 
1.0 0.208 0.1406 
1.2 0.219 0.1661 
1.5 0.231 0.1958 
2.0 0.246 0.229 
2.5 0.258 0.249 
3.0 0.267 0.263 
4.0 0.282 0.281 
5.0 0.291 0.291 

10.0 0.312 0.312 
∞ 0.333 0.333 

 
 



• Shearing stress in thin-walled members 

 
<1> Regular cross section 
 
<2>Thin-walled members 
 

 



 

• Torsion of thin-walled hollow shafts 
 

 
 
(1) stress analysis 
 

 
Consider a hollow cylindrical 
member of non-circular cross section, 
equilibrium of the element AB 
requires 
 

FA=FB 

 

 

ytxt bbAA ∆=∆ ττ  
(by using shear equivalent) 
q=τt=constant 
 
 
shear flow 
 
 
 
Analogy: (1) the distribution of shear 
stress τ in the transverse section of a 
thin-walled hollow shaft 
        (2) the distribution of the 
velocities v in water flowing through 
a closed channel of unit depth and 
variable width. 
 
Flow in channel 
   q=vt 

Shear force in 
the thin-wall 
   q=τt 

v τ 



(2) Formula for shearing stress and angle of twist 
 

Shearing Stress: 
 
• The shear force dF on a small 

element ds is 
dF=τdA=τ(tds)=qds 
 

• The moment dM0 of dF about an  
arbitrary point O is 
dM0=pdF=pqds=q(pds) 
 

   
• The moment dM0 of dF about on 

arbitrary point O is 
dM0=pdF=pqds=q(pds) 
where pds equals twice the area 
element da of tringle: 
dM0=q(2da) 
 

• The torque T is 

qAdaqdMT 2)2(0 === ∫∫  

A----the area bounded by the center 
line of wall cross section 
 

• The shear stress τ 

      
tA
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t
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2
==τ                 (circular tube, an special case) 

• The angle of twist  

    ∫=
t

ds

GA

TL
24

φ  

 



• Example 

 
<1> Determine the shear stress in uniform and variable 
wall thickness 
                 tA

T
2=τ      (T is given) 

<2> Using τ=40Mpa, determine 
the largest torque which may be 
applied to each of the brass bars 
and tube. 

a) Bar with square cross 
section   

    τmax=T/c1ab2,àT=532N· m 
b) Bar with rectangular cross 

section  
    τmax=T/c1ab2,àT=414N· m 
c) Square tube : τmax=T/2tA,àT=555N· m 
 
 
 
 
 
 



5.2 Unsymmertic bending of beams and the 
principal centroidal axes of the cross section 
• Area moments and products of inertia ----

definitions 

 
FIGURE 9.1.1. (a) Arbitrary plane area A with differential element dA. (b) Area 
symmetric about the t axis. (c) Centroidal axes yz and distances dy and dz used in 
parallel axis theoremes. (d) Orthogonal axis systems st and ξη. having common origin 
but different orientation. 

(1) Moment of inertia about s and t axes 

∫ ∫==
area aera

ts dAsIdAtI 22 ,                 (Is>0,It>0) 

(2) Polar moment of inertia about point o (Io>0) 

∫ ∫ +=+==
aera aera

tso IIdAstdArI )( 222  

(3) Product of inertia about t and s axes 

dAstI
aera

st ∫=              (Ist can be positive, negative or zero. If s 

or t is a symmetry axis of area, then Ist=0 ) 
• Principal Axes 

For a given area A and a given origin O, there are two axes 
s’,t’ about which the moments of inertia are, respectively, 
greater and less than about any other axes through origin O. 
There two axes are called principal axes, the corresponding 
moments of inertia are principal moments of inertia (where 
I  s  ’ t  ’=0). 



 



• How to decide the position of Principal Centroidal 
axes 

(1) Find the centroid of the cross section and select axes s and 
t 

(2) Calculate the Is and It, Ist 
(3) Calculate the angle between Principal Centroidal axes and 

axes t,s by 
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(4) Calculate the Principal moment of inertia 
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If Imax=Imin, then all axes are principal  
(as in the case of centroidal axes of circular cross section) 

• There are exact analogy between principal stress(Mohr’s 
circle) analysis and the principal moment of inertia 
Imax    ,    Imin    ,    Ist  
 
 
σmax    ,   σmin   ,   τxy 



• The precise condition under which the neutral axis 
of a cross section of arbitrary shape coincides with 
the axis of the couple M 

 
(1) Assume both 

couple vector M 
and the neutral 
axis of the cross 
section to be 
directed along Z 
axis 

 
(2) The elementary force σxdA must satisfy  

• ∫ ∫ ∫ ⇒=−=−⇒= 00 ydA
c
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                   ∫ ⇒= 0ydA require neutral axis be a centroidal axis 
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    ∫ ⇒= 0yzdA Axes y and z are principal centroidal axes 

 
product of inertia Iyz 

 
CONDITION:If, and only if, the couple vector M is 
directed along one of the principal centroidal axes of 
the cross section 



• Sample problems: 
 
 
(1) In all the 4 cases, the 

couple vector M is 
directed along one of the 
principal centroidal axes  
so the beutral axes are 
all coincident with the 
axes of the couples, 
even though some 
couples are not in a 
plane of symmetry or 
even though some cross 
section have no axes of 
symmetry. 

 
 
 
 
(2) In all these cases, we 

can use the formula 

         
I

My
x −=σ  

to calculate stresses 
directly. 
I refers to the principal 
centroidal axes. 

 



• The above formula can 
also be used to calculate 
the stress in Fig 4.58 , 
once the principal 
centroidal axes of the 
cross section have been 
determined 

 
 
 
• As we indicated earlier, the neutral axis of the cross section 

will not, in general, coincide with the axis of the bending 
couple, as shown in Fig.4.59 
Since  the normal stress 
at any point of the neutral 
axis is zero, we can 
determine the neutral axis 
by the following equation:  
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a straight line of slope m=(Iz/Iy)tanθ 
φ>θ  when Iz>Iy   , φ<θ  when Iz<Iy 

 



• Determination of stresses in unsymmetric bending  ----  
Principal of superposition 

 
 
(1) Resolving the vector M 

into vectors My and Mz 
along y and z axes  

         Mz=Mcosθ, My=Msinθ 
 
 
 
(2) Since y and z axes are 

principal centroidal 
axes of the cross section, 
we  can directly write: 
σx due to Mz is 

z

z
x I

yM−=σ  

σz due to My is 

y

y
x I

zM
+=σ  

 
 
 
(3) The total stress is  
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The stress distribution 
in unsymmetric bending 
is linear. 

 



4.9 UNSYMMETRIC BENDING (MECH101) 
 
Symmetric bending: Where the member possesses at 
least one plane of symmetry and is subjected to couples 
acting in that plane 

 
------ the   neutral axis of the cross section is found to  
coincides with the axis of the couple 
 
• Unsymmetric bending: Situations where couples do 
not  act in a plane of symmetry of the member or the 
member does not possess any plane of symmetry 

 
------ the neutral axis of the cross section usually does 
not coincide with the axis of the couple 
 
 



4.10 GENERAL CASE OF ECCENTRIC 
AXIAL LOADING 

 
• More general cases: axial load is not in plane of 

symmetry 

 
(1’) First find the principal centroidal axes of the cross 

section  
(1) Saint-Venant’s principal----replace the original 

loading by the statically equivalent loading 
 
(2) Principal of superposition 
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(be careful to determine the sign of each of the three 
terms) 

 
 

 



 



5.3 Unsymmetric loading of thin-walled members, 
shear center (MECH 101,pp 320-327) 
 
• Stress formulas for transverse loading on cross section 

of thin-walled member with a vertical plane of 
symmetry 
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• Transverse loading on thin-walled members which do 

not possess a vertical plane of symmetry(bend and 
twist) 

 



• The condition for bending without twisting 

 
• Calculation of the position of Shear Center 
• When the force P is 

applied at a distance e to 
the left of the center line of 
the web BD, the member 
bends in a vertical plane 
without twisting 

• The point O where the line of action of P intersects the 
axis of symmetry of the end section is called shear 
center. 

• Any oblique load P is 
applied through the shear 
center, the member will be 
also free of twisting, since 
it can be decompose into 
Py and Px. 



• Example 5.04 
Determine the shear center O of a 
channel section of uniform thickness, 
b=100mm, h=150mm, t=3mm 
(1) Assume that the member does 

not twist, the shear flow q in 
flange AB at a distance from A 

I
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I
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(2) The magnitude of the horizontal 
shear force F on flange AB 
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(3) The distance e from the center 
line of web BD to the center O 
is 
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• Example 5.05 
 
Determine the distribution of the 
shearing stresses caused by 800N 
vertical shear V at the shear center 
O 
 
 
(1) Since V is applied at the 

shear center, there is no 
torsion. The shearing stress 
in the flange AB can be 
calculated as  

s
I

Vh
It

VQ
t
q

2
===τ  

So the shear distribution is a 
linear function of s along 
AB. 
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(2) The distribution of the 
shearing stress in the web is 
parabolic, 
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bthhtQ =   at N.A. 

So: 
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• Example 5.06 
 

For the channel section of the beam, 
determine the maximum shearing stress 
caused by V=800N applied at the 
centroid of the section(neglecting stress 
connection) 

 
(1) Determine the shear center, 

e=40mm 
(2) Replace the shear V at the centroid by an equivalent force-

couple system at the shear center O: the couple (torque) 
T=V (oc)=55.2N•m 

(3) Suppose the shear stress due to V (at e=40mm, bending 
without twisting) with the shear stress produced by the    
torque T, we get τmax in the section: 
 

maxτ (bending due to V) =1.956Mpa (lost example) 

maxτ  (torsion) Mpa
abc
T

8.522
1

==  

maxτ =1.956+52.8=54.8Mpa 

 
(4) From this example, we can see that the contribution to τ 

due to the torsion is significant ! 



• Thin-walled members with no plane of symmetry, position of 
the shear center 

 
(1) If the load is perpendicular 

to one of the principal 
centroidal axes CZ of the 
cross section, then the 
member will not be twisted 
if the load pass through the 
corner O along vertical line. 

 
(2) The corner O is the shear center of the cross-section. 
(3) For the Z-shape cross section, the shear center is at O. 

 



• Example 5.8 
 
Determine the distribution of 
shearing stresses in the thin-
walled angle shape DE of 
uniform thickness t for the 
loading shown. 
(1) Shear center: since P pass 

through O, there is no 
twisting. 

(2) Principal centroidal axes 
through point C (Centroid) 

(3) Resolve shear V(=P) into 
Vy, Vz, which are parallel 
to the principal axes, and 
calculate the corresponding 
shear stress, respectively, 
by formulas 
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(4) Obtain the total shear stress 
τ by 

21 τττ +=  
 
 
 


