CHAPTER FHIVE

TORSION, UNSYMMETRIC BENDING
AND SHEAR CENTER

5.1 Torsion of noncircular members and thin-walled hollow
shafts (MECH101, pp.163-169)

5.2 Unsymmetric bending of beams and the principal centroidal
axes of the cross section (MECH 101, pp.242-251)

5.3 Unsymmetric loading of thin-walled members, Shear center
(MECH 101,pp.320-327)

Review and Summary

5.1 Torsion of noncircular members and thin-walled hollow
shafts

Torsion of noncircular members

. T =10 (Free surfage)

@ (b) (©)

FIGURES8.12 (a) Torsion of a bar of square cross section, showing distortion of a
rectangular grid on the lateral surfaces.(b)Cross section remain square.(Thus distortion of the
lateral surface grid is caused by xdirection warping motion.) (c) State of stress at points A and
B under torqueT.
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Shearing in uniform rectangular cross section
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Table 3.1 Coefficient for

Rectangular Barsin Torsion

Alb Cl C2
1.0 | 0.208 | 0.1406
1.2 | 0219 | 0.1661
1.5 | 0231 | 0.1958
20 | 0246 | 0.229
25 | 0258 | 0.249
3.0 | 0267 | 0.263
4.0 | 0282 | 0.281
50 | 0291 | 0.291

10.0 | 0312 | 0.312
¥ 0.333 | 0.333

For a/lb>=5, ¢;=c,=1/3 (1-0.630b/a)

Distribution of shearing stress---membrane analogy

* A homogeneous elastic membrane attached to a fixed frame
and subjected to a uniform pressure on one side--- analog of the
bar in torsion: The shearing stresst will have the same direction
as the horizontal tangent to the membrane at Q' , and its
magnitude will be proportional to the maximum slope. The
applied torque will be proportional to the volume between the

Bectangular frame

! Tangant of
max. slope

membrane and the plane of the frame.




Shearing stress in thin-walled members
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<1> Regular cross section
<2>Thin-walled members
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Torsion of thin-walled hollow shafts

(1) stressandysis

Considr a hollow cylindrica
member of non-circular cross section,
equilibrium of the element AB
requires

Fig. 3.50
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t stADX =t t.Dy \“Zbi
(by using shear equivalent) Fa J i:\;t; X
=t t=constant Ha 0%
shear flow

Analogy: (1) the distribution of shear
stress t in the transverse section of a
thin-walled hollow shaft

(2) the distribution of the
velocities v in water flowing through
a closed channel of unit depth and
variable width.

Flowinchannel ., Shear forcein
g=Vvt the thinrwall

o=t




(2) Formulafor shearing stress and angle of twist
Shearing Stress:

- The shear force dF on a small
edement dsis
dF=t dA=t (tds)=qds

- The moment dM, of dF about an  fis-**
arbitrary point O is
dM ¢=pdF=pgds=q(pds)

- The moment dM, of dF about on
arbitrary point O is
dM ¢=pdF=pgds=q(pds)
where pds equals twice the area
element da of tringle:

dMo=q(2da)
‘f
- ThetorqueT is 'r
T = @M 0 :@(Zda) - 2qA Fig. 3.55 |

A----the area bounded by the center
line of wall cross section

The shear stresst

_q_T . _
t=—=— circular tube, an specia case
Y ( P )
- Theangle of twist
£ TL .ds

anc Ot
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<1> Determine the shear stress in uniform and variable
wall thickness

t :-VZtA (T isgiven)

<2> Using t=40Mpa, determine
the largest torque which may be (.l)T
applied to each of the brass bars iy
and tube. <>\
a) Bar with sguare cross
section i o1
traT/CaD’, DT=532N- m ||
b) Bar with rectangular cross
section
tma=T/C1ab% > T=414N- m
C) Squaretube: t a=T/2tA,> T=555N- m
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5.2 Unsymmertic bending of beams and the

principal centroidal axes of the cross section

- Area moments and products of Inertia ----
definitions

A
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FIGURE 9.1.1. (a) Arbitrary plane area A with differential element dA. (b) Area
symmetric about the t axis. (c) Centroidal axes yz and distances d, and dz used in
parallel axistheoremes. (d) Orthogoral axis systems st and xh. having common origin
but different orientation.

(1) Moment of inertiaabout sand t axes
Ii= Ot°dA, I, = ¢pdA (15>0,1:>0)

area aera
(2) Polar moment of inertia about point o (1,>0)

l,= QrdA= GJt* +s%)dA=1,+1,

aera aera
(3) Product of inertiaabout t and s axes

4 = c‘ftdA (I¢ can be positive, negative or zero. If s
aera

or t isasymmetry axis of area, then I4=0)

Principal Axes
For a given area A and a given origin O, there are two axes
s ,t about which the moments of inertia are, respectively,
greater and less than about any other axes through origin O.
There two axes are called principal axes, the corresponding
moments of inertia are principal moments of inertia (where

ls ¢ =0).




FIGURE 9.2.1. Elastic fexural stress in 2 beam where
the 1= plane is a plane of symmetry. The loads produce mo-
ment M. which acts on material behind the v plane, Vector
M, is parallel 1o the v axis. which is a principal axis of the
eross-sectional anta. Poinl O s the centroid of the cross sec-
tien. 5
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How to decide the position of Principal Centroidal
axes

(1) Find the centroid of the cross section and select axes s and
t
(2) Caculatethelsandly, lg

(3) Calculate the angle between Principal Centroidal axes and
axest,sby

tan2qm=I |
t = s

(4) Calculate the Principal moment of inertia
2

21

max(min) 2 2 g
If 1mex=lmmin, then all axes are principal
(asin the case of centroidal axes of circular cross section)

There are exact analogy between principal stress(Mohr' s
circle) analysis and the principal moment of inertia

Imax y Imin y Ist

!

Smax s Smin txy



- The precise condition under which the neutral axis
of a cross section of arbitrary shape coincides with
the axis of the couple M

(1) Assume  both
couple vector M
and the neutral
axis of the cross
section to be
directed along Z
axis

(2) Theeementary force s dA must satisfy
N\ — \ y —_ S \ —_
g dA=0P g smEdA— - 7mO/dA—OD
C)/dA =0 P require neutra axis be acentroida axis
VS dA=M P §-y)(- 2my)dA=M b
C
S, =-——  —---e--- Eladtic flexure formula
- ops,dA=0p op- 2myda=op
C
(\)/ZdA =0 P Axesyand z are principal centroidal axes

produ$ of inertialy,

CONDITION:If, and only if, the couple vector M is
directed along one of the principal centroidal axes of
the cr oss section




Sample problems:

1)

(2)

In all the 4 cases, the
couple vector M is
directed along one of the
principal centroidal axes
so the beutral axes are
all coincident with the
axes of the couples,
even though some
couples are not in a
plane of symmetry or
even though some cross
section have no axes of
Symmetry.

In all these cases, we
can use the formula

M
.=
to caculate stresses
directly.
| refers to the principal
centroidal axes.

3
Ma. 7l e
- H\.a
o
Fig. 4.52
i

Fig. 4.53




The above formula can
also be used to alculate
the stress in Fig 4.58 |,
once the  principa
centroidal axes of the
Cross section have been
determined

As we indicated earlier, the neutral axis of the cross section
will not, in general, coincide with the axis of the bending
couple, asshown inFig.4.59

Since the normal stress

at any point of the neutral :

axis is zero, we can '
determine the neutral axis
by the following equation:

M
s, =-2¥ Myl
|, Iy
Dy:(:—ztanq)z
y
M :
tang = y _Msnq
M, M cosq

astraight line of slope m=(l/l,)tanq
f>q whenl>ly, ,f<qg whenlx<l,



Determination of stresses in unsymmetric bending ----
Principal of superposition

(1) Resolving the vector M
into vectors M, and M,
aongy and z axes

M,=Mcogj, My=Msinq

Fig. 4.54

(2) Sincey and z axes are
principal centroidal
axes of the cross section,
we can directly write:

s, duetoM,is
s = My

X
I

7 Fig. 4.55

s,dueto My is

M.,z

s, =+
X |
y

(3) Thetota stressis

Sy=- Mz, M,z
|, ly

The stress distribution

in unsymmetric bending

islinear.

Fig. 4.57



49 UNSYMMETRIC BENDING (MECH101)

Symmetric bending: Where the member possesses at
least one plane of symmetry and is subjected to couples
acting in that plane
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Fig. 4.48

------ the heutral axis of the cross section is found to
coincideswith the axis of the couple

- Unsymmetric bending: Situations where couples do
not act in a plane of symmetry of the member or the
member does not possess any plane of symmetry
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Fig. 450 T l.-?:"ra-f’f

of Symmetry

------ the neutral axis of the cross section usually does
not coincide with the axis of the couple




410 GENERAL CASE OF ECCENTRIC
AXIAL LOADING

- More general cases. axia load is not in plane of
symmetry

Fig. 4.64

(1) First find the principal centroidal axes of the cross
section

(1) Sant-Venant s principal----replace the original
loading by the statically equivalent loading

(2) Principal of superposition
s :E_ sz+ MyZ

A,
(be careful to determine the sign of each of the three

terms)
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5.3 Unsymmetric loading of thin-walled members,
shear center (MECH 101,pp 320-327)

- Stress formulas for transverse loading on cross section
of thin-walled member with a verticad plane of
symmetry -

- Transverse loading on thin-walled members which do
not possess a vertical plane of symmetry(bend and
twist)

Fig. 555




. The condition for bendi ng without twisting

- When the force P is

dF ~qds F"f-fd’s

H ’:;, i _
_. = V= f 2ds *
-:-|’|—-—"-':|- ¥ .'H.:r ,, = 'F

& b ] -’ L4

_TF . : T 1V Ve= Fh

&= E.;_"
A —_

1%
Shear cenfer
- Calculation of the position of Shear Center

applied at a distance e to
the left of the center line of
the web BD, the member
bends in a vertical plane
without twisting

- The point O where the line of action of P intersectsthe
axis of symmetry of the end section is called shear
center.

- Any obliqgue load P is

P - P,
applied through the shear \ :J
center, the member will be o~ { TR E

also free of twisting, since -
it can be decompose into Fsss
P, and P.

I



Example 5.04
Determine the shear center O of a
channel section of uniform thickness,
b=100mm, h=150mm, t=3mm
(1) Assume that the member does
not twist, the shear flow q in
flange AB at adistance from A

_VQ _Vsth

I 2|
(2) The magnitude of the horizontal )
shear force F on flange AB 8 -
b . Vthb® aad 0
F=0Qdqds=——- |
T |
(3) The distance e from the center Fig. 541
line of web BD to the center O

IS
o Fh_vihb? h _ th??

V 4] V 4]
where

é 2
he 4+ 2&% btd + 020 0
@12 gZz 0

c/

1
| = IWeb + 2 flange :Et

» éthz(Gb +h) (neglecting t°)

Sofinally
2
e= 3 = b , We can see that e does not depend
ebth ,, N
3b
on t,depends on the ratio h/3b,

e=0~b/2 ,For the given size here, o= 10MM _ \»
2+05




Example 5.05

B p— m‘_:; :
Determine the distribution of the 1 { . "
shearing stresses caused by 800N _’_|| i e
\(/)ertical shear V at the shear center A
| i [ ¢
Fig. 5.62 .:-- :

(1) Since V is applied at the
shear center, there is no
torsion. The shearing stress ST
in the flange AB can be '
calculated as

t It 2
So the shear distribution is a i

linear function of s along

AB.
6Vb

tg =———=1.422Mpa 2

th(6bth) N~

(2) The distribuion of the [

shearing stress in the web is Rl e |
parabolic, o

1 \ f:)+_ == |
Q= 5 ht(4bth) at N.A. f/-,,,x-""’
So: Fig. 5.64 ool

_VQ _ 3v(4bth) _,

.956Mpa
™1t 2th(6bth) g



Example 5.06

For the channel section of the beam,
determine the maximum shearing stress
caused by V=800N applied at the
centroid of the section(neglecting stress
connection)

B |
(1) Determine the shear center,  rgse =~ ™"
e=40mm
(2) Replacethe shear V at the centroid by an equivalent force-

3

couple system at the shear center O: the couple (torque)
T=V (0c)=55.2Ne m

Suppose the shear stress due to V (at e=40mm, bending
without twisting) with the shear stress produced by the

torque T, we get t max IN the section:

T o (bending due to V) =1.956Mpa (lost exampl€)

t o (torsion) = ™ = 52.8Mpa
U o =1.956+52.8=54.8Mpa
‘r"’:i?#i__

H]
/
¥

Fig. 5.86

(4) From this example, we can see that the contribution to t

dueto the torsion issignificant !



Thinrwalled members with no plane of symmetry, position of
the shear center

(1) |If the load is perpendicular ¥

to one of the principa |
centroidal axes CZ of the  ya ﬁ‘(}%\\
cross section, then the £ IG

member will not be twisted .\
if the load pass through the
corner O along vertica line.

Fig. 5.68

(2) Thecorner Oisthe shear ceﬁfer of the cross-section.
(3) For the Z-shape cross section, the shear center isat O.

A

A
Flg. 5.69




Example 5.8

Determine the distribution of
shearing stresses in the thin
walled angle shape DE of
uniform thickness t for the
loading shown.

(1) Shear center: since P pass
through O, there is no
twisting.

(2) Principal centroidal axes f J__
through point C (Centroid)

(3) Resolve shear V(=P) into 4

Vy, Vz which are parallel
to the principal axes, and TEN hmr v P esarr
calculate the corresponding
shear stress, respectively,
by formulas
t _Vy¢' Q
1 - 1
.4
t _VZ¢_ Q
, =2 =
Iy¢t
(4) Obtain the total shear stress
t by
t =t,+t,




