
CHAPTER FOUR
ELASTIC FOUNDATIONS

* Bending of beams on elastic foundations and solutions

** Solution by superposition and Contact stress problems

4.1 Introduction and Foundation Models ---- Winkler Foundation
4.2 Governing Equations For Uniform Straight Beams on Elastic   

Foundations
4.3 Semi-infinite and Infinite Beams with Concentrated Loads
4.4 Semi-infinite and Infinite Beams with Distributed Loads, Short 

Beams
4.5 Contact Stresses ---- Problem and Solutions



• Concept of Elastic Foundations and the Effect of the 
Foundation on the Beam (a kind of contact)

4.1 Introduction and Foundation Models - Winkler Foundation

* Not to study the stresses in the foundation itself.

• Two Analytical Models on Elastic Foundation

(1) Model 1 - Winkler Model - a linear force-deflection relationship is presumed

FIGURE 5.1.1. Deflections of foundation models under uniform pressure. No beam is present.



A linear relationship between the force on the foundation (pressure p) and the 
deflection w is assumed:

p = kow ko is the foundation modulus (unit: N/m2/m)

For beams with width b, we use
p = kw = kobw, unit of k: N/m/m

** An Important restriction of the model: the contact is never broken between beam 
and foundation

(2) Model 2 ---- Elastic solid Foundation ---- More realistic but bore complicated (not 
used here)

• Two Analytical Models on Elastic Foundation

(1) Model 1 - Winkler Model - a linear force-deflection relationship is presumed

FIGURE 5.1.1. Deflections of foundation models under uniform pressure. No beam is present.



4.2 Governing Equations For Uniform Straight Beams on Elastic Foundations

• Governing Equations

(1) In Usual Beam Theory (MECH 101)



(2) Beam Theory on Winkler Foundation

FIGURE 5.2.1. (a) Arbitrary loading on an elastically supported beam. (b) Reaction kw
of a Winkler foundation. The curve w = w(x) is the deflected shape of the beam. (c) 
Forces that act on a differential element of the beam.



• Solution of the Equation

The governing equation for a uniform beam on Winkler foundation:

By introducing a parameter b (unit L-1)

The solution of the governing equation can be written as

Particular solution related with q, w(q) = 0 when q = 0

C1, C2, C3, C4 are constants of integration, which are determined by B.C. When w(x) is 
known, V, M, θ, σ, etc can be calculated by the relevant formulas.

For the convenience, the following symbols are defined:

These quantities are related by certain derivatives, and the value of the above 
quantities are listed in the table.





4.3 Semi-infinite and Infinite Beams with Concentrated Loads

• Semi-infinite beams with concentrated load

FIGURE 5.3.1. (a) Concentrated loads Po and Mo at the end of a semi-infinite
beam on a Winkler foundations. (b) End deflection wo and end rotation θo =
(dw/dx)x=0, both shown in the positive sense.

• Two kind of boundary conditions:

(1) prescribe Po and Mo at x = 0

(2) prescribe wo and θo at x = 0



• For Boundary condition (1)

Let w(q) = 0 in the general expression of solution. Since w = 0 at x →      , 
we must have C1 = C2 = 0. The other two boundary conditions 
determine C3, C4.
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So finally we have:

All M(x), V(x), w(x), q(x) are damped sine and cosine wave



• Example
A semi-infinite steel bar (E = 200GPa) has a square cross section (b = h = 80mm) 
and rests on a Winkler foundation of modulus ko = 0.25 N/mm2/mm. A downward 
force of 50kN is applied to the end. Find the maximum and minimum deflections 
and their locations. Also find max. flexural stress and its location.

(1) Necessary constants are:

(2) The displacement w(x) = 2βPoDβx / k

The min. deflection occurs at the smallest distance for which q = 0. From

we find A βx = 0 at βx = 3p/4 or x = 1432mm, corresponding D βx = -0.0670, so

(This upward deflection reminds us our assumption on the beam – foundation connection)

(3) Bending moment is M = -PoB βx / b, from the table we find that Bbx has largest value 
at βx = π /4, the corresponding B βx = 0.3234, so Mmin = -9.8 x 106 Nmm

→ appears on top of the beam at x = π /4β = 477mm.



• Infinite beams with concentrated load

(1) Concentrated force - by using previous solution - equivalent to:

FIGURE 5.4.1. (a) Concentrated load Po at x = 0 on a uniform infinite beam that 
rests on a Winkler foundation. (b-e) Curves for deflections, rotation, bending 
moment, and transverse shear force in the beam. These curves are proportional to 
A βx, B βx, C βx, D βx, respectively.



By using the solution for semi-infinite beam under concentrated load, we have:

at x = 0,                                                                            due to symmetry 

(mirror at x = 0), we have V = 0 at x = 0. Substituting Po / 2 and Mo = Po / 
4β in the previous solution (semi-infinite beam under concentrated 
force and moment at the end), we obtain the solution for infinite beam 
here:

Notes: In these solutions, x should be x ≧ 0, for x < 0, the w(x), M(x), 
θ(x) and V(x) must be obtained from the symmetry and antisymmetry
conditions: w(x) = w(-x), θ(x) = -θ(-x), M(x) = M(-x), V(x) = -V(-x).



(2) Concentrated moment - by using previous solution - equivalent to:

FIGURE 5.4.2. (a) Concentrated moment Mo at x = 0 on a uniform infinite beam that 
rests on a Winkler foundation. (b-e) Curves for deflection, rotation, bending, 
moment, and transverse shear force in the beam. These curves are proportional to 
B βx, C βx, D βx, and B βx,, respectively.



(1) Deformation analysis: Deflections are antisymmetric with respect to the 

origin; so w|x=0 = 0. Bending moment                                                            ,   

Substituting into the expression w(x) for semi-infinite beam with 
concentrated load,

(2) Then substituting                                               into basic solution, we have

The solutions for the left half of the beam must be obtained from the 
following symmetry and antisymmetry conditions:



• Example:                                            P = 18kN

A infinite beam rest on equally spaced linear coil springs, located every 1.1m along the 
beam. A concentrated load of 18kN is applied to the beam, over one of the springs. EI of 
the beam is 441x109 Nmm2, K = 275 N/mm for each spring. Compute the largest spring 
force and largest bending moment in the beam.

(1) To “smear” the springs into a Winkler foundation:
force applied to the beam by a spring with deflection w is Kw, so if the spring spacing is L, 
the associated force in each span L is Kw, then the hypothetical distributed force is 
therefore Kw / L distributed force kw

of Winkler foundation
distributed force Kw / L 
by a series of springs

=

The “equivalent” Winkler foundation modulus is k = K/L and the β = [k /4EI] 1/4 = 6.136x10-4 /mm

(2) According to the previous solution for infinite beam with concentrated load P, we have

= 22.1mm, the maximum spring force is Fmax = Kwmax = 6075N

(3) If the beam length is finite with several springs, then the problem can be solved as 
static indeterminate beam.



• Example:

FIGURE 5.4.3. (a) Equal concentrated loads on an elastically supported beam. (b-c) 
Resulting deflection and bending moment. Dashed lines represent results of individual 
loads. Solid lines are superposed results. (d-f) Coordinate systems used to solve the 
problem by superposition.

An infinite beam on a Winkler foundation has the following properties:

Two concentrated loads, 18kN each and 2.6m apart, are applied to the beam. 
Determine wmax and Mmax. Principal of superposition: total w and M are

We find that wmax is at point B, Mmax is at A and C. The resultant w is larger than a single 
load, but resultant M is a little smaller than the case of a single load.



4.4 Semi-infinite and Infinite Beams with Distributed Loads, Short Beams

• Semi-infinite beam with distributed load over the entire span

FIGURE 5.5.1. (a) Semi-infinite beam on a Winkler foundation, loaded by end force Po, 
end moment Mo, and a uniformly distributed load qo over the entire beam.
(b) Deflected shape of the beam if simply supported and loaded by qo only.

(I) Analysis: since qo is added to the entire beam, we begin with the 
general solution. At large x, the beam does not bend. There the load is 
carried by the foundation uniformly with deflection qo / k. So in the 
general solution, we have  C1 = C2 = 0 and w(q) = qo / k, and



The boundary condition at x = 0 leads to

The solutions are finally,

(II) In this case, the boundary conditions are M|x=0 = 0, w|x=0 = 0 → C3, C4 → 
w → support reaction at x = 0 to be Q0/2β.

• Infinite beam with distributed load over a length L

FIGURE 5.5.2. Uniformly distributed load qo, over a length L = a + b of 
an infinite beam on a Winkler foundation.



(1) Method: Principal of superposition

(2) Basic solution: infinite beam under concentrated force P

(3) The deflection at Q due to load qodx at O is

(4) The total deflection at Q is

(5) By the same integration, we get the total M at Q



It is helpful to identify three cases:

(I) β L is small (or β is small), L is small: The deflection and bending moment are 
greatest at the middle of the span L, the corresponding condition is that β L < π.
(II) β L is large: (1) deflection is constant in the center portion w = qo / k, and 
bending moment is zero except in the neighborhood of the ends of the loaded zone.
(III) Intermediate values of βL. π < β L

FIGURE 5.5.3 Deflection and bending moment in uniform and uniformly loaded 
infinite beams on a Winkler foundation.



• Short beams on a Winkler foundation

FIGURE 5.6.1. (a) Centrally loaded beam of finite length on a Winkler foundation. 
(b) End deflection wend at x = ± L / 2, as a fraction of center deflection wo, versus β L. 
Also, the ratio of wo for a finite beam to wo for an infinitely long beam.

(2) Get four constants C1, C2, C3, C4, the results are known and are 
tabulated for several cases.

(3) Also 3 cases can be classified: (a) short beams; (b) intermediate 
beams; (c) long beams. The ratio of center deflection changes with the 
length of the beam. The ratio of end deflection to center deflection is 
also plotted in the figure.



4.5 Contact Stress ---- Problem and Solutions

• Features of the contact problem

(1) The area of contact between bodies grows as load increases
(2) In the contact stress problem, stresses remain finite

• The pioneer work by Hertz in 1881

• Basic assumption:

(1) The contacting bodies are linearly elastic, homogeneous, isotropic, 
and contacting zone is relatively small.

(2) Friction is taken as zero → contact pressure is normal to the contact  
area.



• Solution for two contacting spheres

FIGURE 5.8.1. Radius a of the contact area and peak contact pressure po for  the 
cases of (a) two spheres of equal radius, and (b) a sphere on a half-space (which 
amounts to a sphere of infinite radius). Poisson’s ratio is taken as υ = 0.3.

Contact area: circle of radius

The maximum contact pressure 

when a sphere (R1) pressed into a spherical socket (R2), R2 > R1, the results are obtained 
by making R2 negative!



Solution for two parallel contact cylinders of length L (L ≧ 10a)
(1) Contact area: long rectangle L x 2a

• Solution for two crossed cylinders (R1 = R2)
(1) Contact area: circular
(2) a and po are obtained from equations in Fig. 5.8.1(b)

• Some discussions
(1) Contact pressure is not proportional to P
(2) Stress state in the center of the contact area between spheres (x = y = z = 0)

FIGURE 5.8.2. (a) Circular contact 
area between two spheres. Contact 
pressure varies quadratically from a 
maximum of po at x = y = 0.
(b) Principal stresses and maximum 
shear stress along the axis of loads P 
in contacting spheres, for υ = 0.3.
(c) Rectangular contact area 
between parallel cylinders.


