CHAPTER FOUR
ELASTIC FOUNDATIONS

* Bending of beams on elastic foundations and solutions
** Solution by superposition and Contact stress problems

4.1 Introduction and Foundation Models ---- Winkler Foundation

4.2 Governing Equations For Uniform Straight Beams on Elastic
Foundations

4.3 Semi-infinite and Infinite Beams with Concentrated Loads

4.4 Semi-infinite and Infinite Beams with Distributed Loads, Short
Beams

4.5 Contact Stresses ---- Problem and Solutions




4.1 Introduction and Foundation Models - Winkler Foundation

* Concept of Elastic Foundations and the Effect of the

Foundation on the Beam (a kind of contact)
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* Not to study the stresses in the foundation itself.

* Two Analytical Models on Elastic Foundation

(1) Model 1 - Winkler Model - a linear force-deflection relationship is presumed
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FIGURE 5.1.1. Deflections of foundation models under uniform pressure. No beam is present.




* Two Analytical Models on Elastic Foundation

(1) Model 1 - Winkler Model - a linear force-deflection relationship is presumed
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FIGURE 5.1.1. Deflections of foundation models under uniform pressure. No beam is present.

A linear relationship between the force on the foundation (pressure p) and the
deflection w is assumed:

p=kw k, isthe foundation modulus (unit: N/m?2/m)

For beams with width b, we use
p = kw = k bw, unit of k: N/m/m

** An Important restriction of the model: the contact is never broken between beam

and foundation

(2) Model 2 ---- Elastic solid Foundation ---- More realistic but bore complicated (not
used here)



4.2 Governing Equations For Uniform Straight Beams on Elastic Foundations

* Governing Equations

(1) In Usual Beam Theory (MECH 101)
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(2) Beam Theory on Winkler Foundation

P, P,
M”i Yﬁ{! { M""( l\ﬁil £
=X L r)
kewr M( 1
[ [ E w = wix)
I, w V
(a) (b)

FIGURE 5.2.1. (a) Arbitrary loading on an elastically supported
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beam. (b) Reaction kw

of a Winkler foundation. The curve w = w(x) is the deflected shape of the beam. (c)

Forces that act on a differential element of the beam.

dV dM d*M
— =—q + kw, =V - = kw—q
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* Solution of the Equation

The governing equation for a uniform beam on Winkler foundation:

d*w
dx
By introducing a parameter b (unit L)
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+ kw = q

r
k|4
-5 |
4 E1
The solution of the governing equation can be written as

w=e”(C, sin Bx+ C, cos Bx)+ e P(C, sin Bx + C, cos Bx )+ w(g

T

Particular solution related with g, w(q) =0whenqg=0

C,, C,, C;, C, are constants of integration, which are determined by B.C. When w(x) is
known, V, M, 6, o, etc can be calculated by the relevant formulas.

For the convenience, the following symbols are defined:

A, = e P (cos Bx +sin fBx), B B = e P sin PBx

~y _ —JBI - . . e A) _ —,BI - \ .
Cp =€ 7 (cos Brx—sin Bx), D, = e cos B
These quantities are related by certain derivatives, and the value of the above
guantities are listed in the table.
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4.3 Semi-infinite and Infinite Beams with Concentrated Loads

* Semi-infinite beams with concentrated load
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FIGURE 5.3.1. (a) Concentrated loads P_,and M, at the end of a semi-infinite
beam on a Winkler foundations. (b) End deflection w, and end rotation 6o =
(dw/dx),_,, both shown in the positive sense.

* Two kind of boundary conditions:
(1) prescribe P, and M, at x =0

(2) prescribe w,and 6, atx=0



* For Boundary condition (1)

Let w(qg) = 0 in the general expression of solution. Sincew=0at x > 00,
we must have C, = C, = 0. The other two boundary conditions
determine C;, C,.

2y 232,
M _ :—_Efd 111' :41{9—}C3:-ﬁ J’fﬂ
= dx’ x=0 k
3. 5 SR,
V1 _DZ—EIHI 1: _0=-P C, = PP, __fj M,
= dx’ =0 k e
So finally we have:
2pP 2PM
w(x) = J'r o ﬂﬁx_%(jﬁr-
dw _ 2B°P 4B°M
g = —=— ﬂ;{x-l- EDI.fl,ir(.T).F(."f)
dx k B - A

All M(x), V(x), w(x), q(x) are damped sine and cosine wave



* Example

A semi-infinite steel bar (E = 200GPa) has a square cross section (b = h = 80mm)
and rests on a Winkler foundation of modulus k, = 0.25 N/mm?2/mm. A downward
force of 50kN is applied to the end. Find the maximum and minimum deflections
and their locations. Also find max. flexural stress and its location.

(1) Necessary constants are: 1

80" , 20N k|4 »
EI =200000—— = 6.827x1 0" V- mm- k=80ky=——.—> [3 — {—} = 0.001645/ mm
12 NI - 1 4ET

(2) The displ_acement w(x) = 2BP,Dg, / k

2pP -
Wiae =W, =W, = ? 2 =8.225mm
v
. . . . 2B8°P,
The min. deflection occurs at the smallest distance for which q = 0. From € = — —= Ay,
we find A, =0 at Bx = 3p/4 or x = 1432mm, corresponding D 5, = -0.0670, so t
EIBPaDﬁT -
W = ; — —0.551mm
v

(This upward deflection reminds us our assumption on the beam — foundation connection)

(3) Bending moment is M = -P_B ; /b, from the table we find that Bbx has largest value
at Bx =1t /4, the corresponding B ;, = 0.3234, so Mmin =-9.8 x 10 Nmm

Mec
- O, = ‘

Imax
I

= 115MPa appears on top of the beam at x =t /4B = 477mm.




* Infinite beams with concentrated load

(1) Concentrated force - by using previous solution - equivalent to:
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FIGURE 5.4.1. (a) Concentrated load P, at x = 0 on a uniform infinite beam that
rests on a Winkler foundation. (b-e) Curves for deflections, rotation, bending
moment, and transverse shear force in the beam. These curves are proportional to
A g B g C gy D gy respectively.



By using the solution for semi-infinite beam under concentrated load, we have:

-],Uljl /l I-.I'u
tx=0 6 = _\72) APM, =0 M, =— duet mmet
- - — T = — 1 = —
at X , A 2 o 4,3 ue to sy etry

(mirror at x = 0), we have V = 0 at x = 0. Substituting P,/ 2 and M, =P_ /
4B in the previous solution (semi-infinite beam under concentrated
force and moment at the end), we obtain the solution for infinite beam

here:
P Tw 2P
-H." — ﬁ El ;‘1]‘51‘9 — {1L - — ﬁ ¢ Bﬁl"
2k | dx s '
M = P""' Cm;y = — P"' Dﬁ,t.
4,6 ' 2 '

Notes: In these solutions, x should be x = 0, for x < 0, the w(x), M(x),
B(x) and V(x) must be obtained from the symmetry and antisymmetry
conditions: w(x) = w(-x), 8(x) = -6(-x), M(x) = M(-x), V(x) = -V(-x).



(2) Concentrated moment - by using previous solution - equivalent to:

p =T
. ‘/\
v |
4p

FIGURE 5.4.2. (a) Concentrated moment M, at x = 0 on a uniform infinite beam that
rests on a Winkler foundation. (b-e) Curves for deflection, rotation, bending,
moment, and transverse shear force in the beam. These curves are proportional to
B gy C g D py and B Bxr” respectively.




(1) Deformation analysis: Deflections are antisymmetric with respect to the

M M
origin; so w|,_, = 0. Bending moment M"t:ﬂ_ = 2“ M = jﬂ ’

-

Substituting into the expression w(x) for semi-infinite beam with
concentrated load,

2BP, 2B(M_ /2 M
1_.1;.1{_:[}:0: ﬁkﬂ . )6(;'-0.-" )%’J.E;: :16
M M
(2) Then substituting £, = :ﬁ M = Tﬂ into basic solution, we have
B*M dw B’M
w(x) = > B, .0 = = e C
"( ) _ B ('.‘T.T ﬂ_ Bx
A S *?Ljrﬂ _ ﬁﬂ'jra y
JII{:‘L) = - D,Bx" V = — ; ‘_'lﬁx

e =

The solutions for the left half of the beam must be obtained from the
following symmetry and antisymmetry conditions:

w(x) = -w(x); 0(x) = 0(-x); M(x) = -M(-x):
V(x) = V(-x).



* Example:

A infinite beam rest on equally spaced linear coil springs, located every 1.1m along the
beam. A concentrated load of 18kN is applied to the beam, over one of the springs. El of
the beam is 441x10° Nmm?, K = 275 N/mm for each spring. Compute the largest spring
force and largest bending moment in the beam.

(1) To “smear” the springs into a Winkler foundation:
force applied to the beam by a spring with deflection w is Kw, so if the spring spacing is L,
the associated force in each span L is Kw, then the hypothetical distributed force is

therefore Kw / L distributed force kw distributed force Kw / L

of Winkler foundation by a series of springs

The “equivalent” Winkler foundation modulus is k = K/L and the 8 = [k /4El] ¥/* = 6.136x10* /mm
(2) According to the previous solution for infinite beam with concentrated load P, we have

_ PR,
=0 2k

W =W

max

Aﬁ_-‘- = 22.1mm, the maximum spring force is Fmax = Kwmax = 6075N

M =M £ . =133kN -m

— 0 7
max _ (

x=0 4 B
(3) If the beam length is finite with several springs, then the problem can be solved as
static indeterminate beam.
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FIGURE 5.4.3. (a) Equal concentrated loads on an elastically supported beam. (b-c)
Resulting deflection and bending moment. Dashed lines represent results of individual
loads. Solid lines are superposed results. (d-f) Coordinate systems used to solve the
problem by superposition.

An infinite beam on a Winkler foundation has the following properties:
EI=441x10° N -mn? ,k=0.25N/mm/ mm . B=6.136x10"/mm
Two concentrated loads, 18kN each and 2.6m apart, are applied to the beam.
Determine w,,,, and M_ .. Principal of superposition: total w and M are

w=w +w,; M =M + M,

We find that w__, is at point B, M, _, is at A and C. The resultant w is larger than a single
load, but resultant M is a little smaller than the case of a single load.



4.4 Semi-infinite and Infinite Beams with Distributed Loads, Short Beams

* Semi-infinite beam with distributed load over the entire span
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FIGURE 5.5.1. (a) Semi-infinite beam on a Winkler foundation, loaded by end force P,
end moment M, and a uniformly distributed load q, over the entire beam.
(b) Deflected shape of the beam if simply supported and loaded by q, only.

(I) Analysis: since q, is added to the entire beam, we begin with the

general solution. At large x, the beam does not bend. There the load is
carried by the foundation uniformly with deflection g, / k. So in the
general solution, we have C1=C2=0and w(q)=q,/ k, and

- - q. (due to q,)
w=C,B, +C,D, +
3 Bx 1 B e




The boundary condition at x = 0 leads to

23, o) 21,
M| =M,—>C;= 2p M, V| =-P >C,= 2PF, — 2P M,
x= ' k x=0 5 k
The solutions are finally,
203P ) 2;'1{ (dlle o []0)

w = P . DﬁT—LCﬁY +q—‘}/

I ' k R

2B°P 4B°M
0 =— L, AﬁT +LD&J&I =_..V=_.

I I |

(I1) In this case, the boundary conditions are M|,_,=0, w|,_,=0 > C3, C4 >
w —> support reaction at x = 0 to be Q,/2p.

* Infinite beam with distributed load over a length L

FIGURE 5.5.2. Uniformly distributed load q,, over a length L=a + b of
an infinite beam on a Winkler foundation.



(1) Method: Principal of superposition

(2) Basic solution: infinite beam under concentrated force P
PP,
2k

(3) The deflection at Q due to load qodx at O is

w =

Ay,

du-*g = ﬁi—‘f‘ Ag,

(4) The total deflection at Q is

- Pq,
W, = Y

]

;T Dyg,

r Ag dx + I;Aﬁxdx} =% [Dﬁl.

0 2k

Wy = ;’f (2-p,, -D,)

(5) By the same integration, we get the total M at Q

M, = 4‘2’2 (Bs +B)

Bq,

2k

do (~ 1
(-4,3@ - A,Bb)‘VQ - E(( Ba (ﬁb)

and 9@ =



It is helpful to identify three cases:

(1) B Lis small (or B is small), Lis small: The deflection and bending moment are
greatest at the middle of the span L, the corresponding condition is that B L < .

(I1) B Lis large: (1) deflection is constant in the center portion w = q, / k, and
bending moment is zero except in the neighborhood of the ends of the loaded zone.
(1) Intermediate values of L.t < B L
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FIGURE 5.5.3 Deflection and bending moment in uniform and uniformly loaded
infinite beams on a Winkler foundation.



* Short beams on a Winkler foundation
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FIGURE 5.6.1. (a) Centrally loaded beam of finite length on a Winkler foundation.
(b) End deflection w, 4at x =+ L/ 2, as a fraction of center deflection w,, versus B L.
Also, the ratio of w, for a finite beam to w, for an infinitely long beam.

» P
(1) Four boundary conditions: Atx=0,8=0and V' =-—
L L o
at x= 375 M=V=0

(2) Get four constants C1, C2, C3, C4, the results are known and are
tabulated for several cases.

(3) Also 3 cases can be classified: (a) short beams; (b) intermediate
beams; (c) long beams. The ratio of center deflection changes with the
length of the beam. The ratio of end deflection to center deflection is
also plotted in the figure.



4.5 Contact Stress ---- Problem and Solutions
* Features of the contact problem

(1) The area of contact between bodies grows as load increases
(2) In the contact stress problem, stresses remain finite

* The pioneer work by Hertz in 1881
* Basic assumption:
(1) The contacting bodies are linearly elastic, homogeneous, isotropic,
and contacting zone is relatively small.

(2) Friction is taken as zero - contact pressure is normal to the contact
area.



* Solution for two contacting spheres

P P
PR /3 N PR |1/3
a=0881 [T] R a= Lm@[ F ]
2 2
1113
p, =0.616 |2E p, =0.388 |PEX|'1
R? R?
P P sphere of infinite
(a) (b) radius

FIGURE 5.8.1. Radius a of the contact area and peak contact pressure po for the

cases of (a) two spheres of equal radius, and (b) a sphere on a half-space (which

amounts to a sphere of infinite radius). Poisson’s ratio is taken as v = 0.3.
1

i

1
3 P (R+R Y I
The maximum contact pressure Po = -~ =0.388 PE'( . j

when a sphere (R,) pressed into a spherical socket (R,), R, > R,, the results are obtained
by making R, negative!

Contact area: circle of radius a = 1,109(?(“’

E\R +R,

R,
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Solution for two parallel contact cylinders of length L (L = 10a)
(1) Contact area: long rectangle L x 2a

) a=152 |2 B |, a1 PE(RWR?}
LE\ R +&, ) L RR,

* Solution for two crossed cylinders (R, = R,)
(1) Contact area: circular
(2) a and po are obtained from equations in Fig. 5.8.1(b)
* Some discussions
(1) Contact pressure is not proportional to P
(2) Stress state in the center of the contact area between spheres (x =y =z =0)
1+2v

O, :Gy:_ P,,0. =—P,

—1.0 -05

FIGURE 5.8.2. (a) Circular contact

@ o) area between two spheres. Contact
"AL _ a pressure varies quadratically from a
x fsollosd ,y¥ maximum of p, atx =y = 0.

z 20 (b) Principal stresses and maximum

shear stress along the axis of loads P
in contacting spheres, for v =0.3.

(c) Rectangular contact area
between parallel cylinders.




